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Accessing an arbitrary element of a singly linked list or cons list requires traversing up to a linear number
of pointers. The applicative random-access list is a data structure that behaves like a cons list except that
accessing an arbitrary element traverses only a logarithmic number of pointers. Specifically, in a list of length
𝑛, an arbitrary element can be accessed by traversing at most 3 ⌈lg 𝑛⌉ − 5 pointers.

In this paper, we present a simple variation on random-access lists that improves this bound and requires
traversing at most 2 ⌈lg (𝑛 + 1)⌉ − 3 pointers. We then present a more complicated variation that improves
this bound to (1 + 1

𝜎 ) ⌊lg 𝑛⌋ + 𝜎 + 9 for any 𝜎 ≥ 1. This shows that it is possible to get asymptotically close to
the information-theoretically optimal bound of ⌈lg (𝑛 + 1)⌉ − 1.
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1 Introduction
The singly linked list, also known as the cons list, is a cornerstone of functional programming and
one of the simplest and most elegant data structures. As cons lists are just cons cells sequentially
linked by pointers, operations like cons (prepending an element), car (accessing the first element),
and cdr (accessing the list excluding the first element) require only 𝑂(1) time and space. However,
the simplicity of the cons list comes with a trade-off. Accessing an arbitrary list cell (lookup)
demands traversing up to 𝑛−1 pointers for a list of length 𝑛. This becomes particularly cumbersome
in applications with frequent random access, especially in environments where pointer traversals
are costly, such as in distributed applications where pointer traversals may involve network access.
In such cases, functional programmers might yearn for the efficient random access of arrays. Yet,
arrays pose their own challenges in purely functional settings, where previous versions of the array
after updates must be preserved and available.

A data structure that improves on the linear-time lookups of cons lists is the purely functional
random-access list by Okasaki [24], which we call Okasaki lists. In Okasaki lists, cons, car and
cdr can also be done in constant time and space, making them asymptotically equally efficient
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for stack-like behavior. Okasaki lists go beyond cons lists by supporting lookups in no more than
2⌈lg(𝑛 + 1)⌉ + 𝑂(1)1 pointer traversals, where 𝑛 is the length of the list.

An alternative to both cons lists and Okasaki lists is the applicative random-access stack by
Myers [23], which we call Myers lists. Myers lists are structured similarly to cons lists, but every
cell in a Myers list has an additional jump pointer that points further down the list. The cells that
these additional jump pointers point to are chosen such that lookup for a list of length 𝑛 requires
traversing at most 3 ⌈lg 𝑛⌉ − 5 pointers. Myers lists support constant time and space cons, car and
cdr operations just like cons lists and Okasaki lists, and logarithmic-time lookups like Okasaki lists.

Although Okasaki lists and Myers lists perform lookup in logarithmic-time, there are subtle
differences in the structural characteristics of lookup between them. An Okasaki list is essentially a
cons list (the “spine”) of complete binary trees where the Okasaki list elements are contained in
the tree nodes. Querying an arbitrary tree node can be done in logarithmic time via only pointer
traversals, but the returned tree node is not an Okasaki list, and tree nodes further down the
list may not be reachable from that node (thus, more lookups cannot be done from that node).
Alternatively, if lookup on an Okasaki list obtains an arbitrarily long suffix of the list (in which
the leftmost tree root is the desired tree node), then it involves a sequence of cdr operations, both
on the Okasaki list itself and on the cons list spine, to reconstruct the spine of the suffix. This can
incur a logarithmic-space cost and change the pointer structure of the list significantly. In contrast,
Myers lists, like cons lists, perform lookup by merely traversing pointers until the appropriate list
cell is reached and returned. This cell is also the head of a Myers list, from which further lookups
to arbitrary succeeding cells can be performed.

This structural difference between Okasaki lists and Myers lists comes with further tradeoffs.
Purely functional updates of arbitrary Okasaki list elements can be done in logarithmic time and
space, unlike Myers lists and cons lists which require linear time and space. On the other hand,
the structural characteristics of lookups in Myers lists allow them to efficiently support range or
path queries (querying some property of a contiguous sequence of elements) [20] by embedding
additional information in the pointer fields of each cell. For example, if the outgoing pointers of
each cell in a Myers list store the sum of the elements they traverse, then the sum of an arbitrary
contiguous sequence of elements can be obtained in logarithmically many pointer traversals. In
addition, the fact that two heads can be cons-ed onto the same tail without modifying the tail’s
structure (tail-sharing) makes Myers lists ideal for path queries over trees [1]. Myers lists have
been more broadly used for static analysis [5], and applications that perform computations over
intervals [2, 11] can be adapted to use Myers lists.

However, the 3⌈lg 𝑛⌉−5 lookup performance of Myers lists is well above the information-theoretic
lower bound of ⌈lg(𝑛+1)⌉−1 for traversals on linked data structures with two pointers. For instance,
starting from the root of a perfect binary tree with 𝑛 nodes, accessing any other node requires
traversing no more than ⌈lg(𝑛 + 1)⌉ − 1 pointers. Thus, the motivating question of this paper is:
how far can we push the theoretical lookup performance of random-access lists?

A trivial approach might involve increasing the number of outgoing pointers in each cell of
Okasaki lists or Myers lists from 2 to 𝑏, thereby changing the base of the logarithm from 2 to 𝑏,
which is equivalent to reducing lookup costs by a constant factor of lg 𝑏. However, this increases
space usage and does not provide novel theoretical or algorithmic insights. Instead, our objective
is to design a new random-access list that (1) improves theoretical lookup performance without
increasing the number of outgoing pointers per cell, and (2) retains the structural characteristics of
Myers lists. This structure thus optimizes workloads (a) requiring purely functional list structures

1In this paper, lg denotes log2.
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type 'a cell = { value: 'a; next: 'a cell; length: int; jump: 'a cell }

val init : 'a -> 'a cell ;; val cdr : 'a cell -> 'a cell ;;

val length : 'a cell -> int ;; val cons : 'a -> 'a cell -> 'a cell ;;

val car : 'a cell -> 'a ;; val lookup : 'a cell -> int -> 'a cell ;;

Fig. 1. The cell type and interface for Myers lists.

with cons-list-like properties (tail-sharing, etc.), (b) are dominated by lookups, and (c) where pointer
traversals may be expensive relative to other computations.

To achieve this goal, this paper explores modifications to Myers lists that improves its lookup
performance. First, we describe an interface for working with Myers lists (Section 2).This is followed
by the main contributions of this paper:

(1) Section 3 reviews traditional Myers lists [23] and provides a recursive construction, yielding
a structure similar to the one presented by Okasaki [24]. However, unlike Myers and Okasaki,
this paper leverages the recursive structure of Myers lists to perform a new algorithmic-
complexity analysis via recurrence equations, instead of using skew-binary numbers.

(2) Section 4 introduces a novel random-access list by making minor structural modifications to
Myers lists, improving its lookup complexity to 2⌈lg(𝑛+1)⌉−2 pointers, effectively matching
that of Okasaki lists while retaining the properties stated in our objectives.

(3) Section 5 introduces a variation on the list presented in Section 4, that, while significantly
more complex structurally, further improves the lookup performance to (1+1/𝜎) ⌊lg 𝑛⌋+𝜎+9
pointers. This new random-access list shows that it is possible to design a data structure
whose lookup performance comes arbitrarily close to the information-theoretical limit of
⌈lg(𝑛 + 1)⌉ − 1, while retaining the properties stated in our objectives.

Finally, Section 6 compares the performance of these variations, Section 7 discusses related work
and Section 8 concludes. Appendix A contains an embedded artifact and links to the online artifact
[26]. All code presented in this paper is written in OCaml.

2 Myers Lists
To set up the discussion for the rest of this paper, in this section, we provide a high-level overview
of the interface for working with Myers lists. We first describe the cell structure of individual Myers
list cells (Section 2.1), then show the API for working with Myers lists and the implementations of
some of these functions (Section 2.2), and finally summarize the main modifications we will make
to the original Myers list to improve lookup performance (Section 2.3).

2.1 Myers List Cells
Cons lists consist of cells, where each cell has a car field storing the value of that cell, and a cdr
pointer that points to the next sequential cell in the cons list. Similarly, Myers lists also consist of
cells, where each cell has the type in Figure 1, and (1) value is the value stored in the cell, (2) next
points to the next cell in the list, (3) length is the number of cells in the list after and including this
cell, and (4) jump points further along the Myers list in a way that allows traversal in logarithmically
many steps. value and next, respectively, correspond to car and cdr of a cons list cell. length is
also used to decide between taking the next or jump pointers during a lookup; it is also possible to
store the length of the entire list at the head only instead of the length at every cell, although this
places some computational overhead on finding the shortest path between two cells.
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let init (x: 'a): 'a cell =

let rec c: 'a cell = { value = x; next = c; length = 1; jump = c } in c

let length (xs: 'a cell): int = xs.length

let car (xs: 'a cell): 'a = xs.value

let cdr (xs: 'a cell): 'a cell = xs.next

Fig. 2. Function implementations that are shared across all Myers lists variants.

let cons (x: 'a) (xs: 'a cell): 'a cell =

{ value = x; next = xs; length = xs.length + 1; jump = ... }

let rec lookup (xs: 'a cell) (len: int): 'a cell =

if xs.length = len then xs

else if ... then lookup xs.jump len

else lookup xs.next len

Fig. 3. Implementation templates of cons and lookup; ellipses (...) depend on the Myers list variant.

2.2 Myers List API
Figure 1 shows the functions that form the public interface for working with Myers lists. Similar
to their analogues for cons lists, all of the functions in the API do not perform mutation on data;
Myers lists are purely functional data structures. The functions described in the API are as one
would typically expect of cons lists: (1) init x initializes a list of length 1 with x as its only element,
(2) length xs returns the length of the list where xs is the list head, (3) car xs retrieves the first
element of the list starting at xs, (4) cdr xs obtains the list where the first cell of xs is omitted (this
assumes xs has length greater than 1, otherwise cdr xs just returns xs), (5) cons x xs prepends
x onto xs, and (6) lookup xs len retrieves the list cell in xs whose length is len (assuming len
is within bounds). Just like cons lists, Myers lists do not support efficient implementations for
purely functional append (appending an element to the list), concat (list concatenation) or update
(updating a list element at a particular cell).

Figure 2 shows the implementations that are shared by all variants of Myers lists presented in
this paper for some functions in the API. length, car and cdr conveniently access the fields of the
list cell. To simplify our presentation, we use the convention that all Myers lists are non-empty,
and as shown in the implementation of init, a cell with length 1 has its next and jump pointers
point to itself. Empty Myers lists can be supported with small modifications to the interface and
implementation; we describe these in the supplementary material of this paper.

2.3 Our Focus
The goal of this paper is to design variants of the original Myers list [23] to reduce the number
of pointer dereferences performed by lookup. This is done solely by modifying where the jump
pointer of each cell points to. This results in new list structures that require fewer pointer traversals
for lookup, i.e., shorter paths between two list cells. A consequence of this is that cons and lookup
look like the generic implementation templates shown in Figure 3, where each variant of Myers
lists we present in this paper fills in the ellipses (...) differently.
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16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

𝑘=0𝑘=0𝑘=0𝑘=0𝑘=0𝑘=0𝑘=0𝑘=0

𝑘 = 1𝑘 = 1𝑘 = 1𝑘 = 1𝑘 = 1𝑘 = 1𝑘 = 1𝑘 = 1
𝑘 = 2𝑘 = 2𝑘 = 2𝑘 = 2

𝑘 = 3𝑘 = 3
𝑘 = 4

Fig. 4. An example basic Myers list of length 16. Each box represents a cell. Cell value fields are not shown.
The number in the box is the length of that cell. Braces indicate the degree 𝑘 of the region containing those
cells. Solid arrows : next pointers. Dashed arrows : jump pointers. Thick arrows : path of the

traversal from cell 14 to cell 2.

3 Basic Myers Lists
This section provides an overview of the original Myers lists, which we call basic Myers lists. We
refer readers unfamiliar with basic Myers lists to the original paper [23] for more details. However,
while Myers [23] uses an iterative construction, we present a recursive construction (Section 3.1).
This recursive construction allows us to view Myers lists as trees (Section 3.2). We then describe
how pointers are traversed during a lookup (Section 3.3), and we use the recursive construction of
Myers lists to analyze its lookup performance via recurrence equations (Section 3.4).

3.1 Construction of Basic Myers Lists
Myers [23] describes an iterative construction rule (repeated application of cons) which we also
re-state in the supplementary material. The essence of the iterative construction is that the jump
pointer of a cell c is assigned using the following rule:

Let xs be c.next, ys be xs.jump, and zs be ys.jump. Then,

c.jump = {
zs if xs.length − ys.length = ys.length − zs.length

xs otherwise

This rule of assigning jump pointers, essentially, uniquely characterizes the structure of basic
Myers lists. Although this rule causes a fraction of cells in a Myers list to have their jump pointer
being identical to their next pointer, it is conceptually simple and makes cons easy to implement,
while still allowing lookup to be efficient.

An example basic Myers list of length 16 is shown in Figure 4. Removing jump pointers in Figure 4
reveals the structure of a cons list. The jump pointers of Myers lists allow us to traverse through
Myers lists more quickly. For example, to traverse to cell 2 from cell 14, instead of traversing
sequentially along the next pointers, we can take the pointers marked by the thick arrows. The
distinction between the different thick arrows shown in Figure 4 will be described in Section 3.2.

Although Myers [23] provides an iterative construction, the resulting structure of Myers lists
exhibit a recursive pattern. As shown in Figure 4, the braces highlight regions that repeat the same
pointer structure. For example, the cells and pointers between cell 14 and cell 8 exactly match
(modulo renumbering) those between cell 8 and cell 1. We assign each of the sub-regions a degree 𝑘
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𝑄𝑘−1 𝑅𝑘−1
𝑙 𝑛 𝑚 𝑖

(a) Flat view of construction rule, as
discussed in Section 3.1.

𝑙 𝑖

𝑄′
𝑘−1 𝑅′𝑘−1

𝑛 𝑚

(b) Tree view of construction rule, as discussed in
Section 3.2. 𝑄′

𝑘−1 and 𝑅′
𝑘−1 are the cells of 𝑄𝑘−1 and

𝑅𝑘−1 excluding their last cells, respectively.

Fig. 5. Construction rule for region of Myers lists of degree 𝑘.

16

15

14

13 12

11

10 9

8

7

6 5

4

3 2

1

Fig. 6. The Myers list shown in Figure 4 but laid out as a tree. Black arrows are pointers taken during
the inward phase of a traversal. For the traversal from cell 14 to cell 2, the outward phase is shown as thick

dashed arrows , and the inward phase is shown as thick squiggly arrows .

that indicates how many levels of recursion it contains. For example, the cells and pointers between
cell 14 and cell 8 have degree 𝑘 = 3.

We define the degree of regions explicitly using the recursive construction rule shown in Figure 5a:
(1) A region has degree 0 if it is a single cell.
(2) A region has degree 𝑘 > 0 if it consists of

(a) two regions 𝑄𝑘−1 and 𝑅𝑘−1, both of degree 𝑘 − 1, such that the last cell of 𝑄𝑘−1 (shown as
cell 𝑚 in Figure 5a) is also the first cell of 𝑅𝑘−1 and

(b) an additional cell 𝑙 not part of 𝑄𝑘−1 or 𝑅𝑘−1 whose next pointer points to the first cell of
𝑄𝑘−1 (cell 𝑛 in Figure 5a) and jump pointer points to the last cell of 𝑅𝑘−1 (cell 𝑖 in Figure 5a).

This rule constructs regions of Myers lists of only length 2𝑘 for some 𝑘. Then, a Myers list of length
2𝑘 is just a region of length 2𝑘 whose rightmost cell has length 1. Finally, Myers lists of other
lengths can be obtained by taking the appropriately long suffix of any Myers list using lookup.

3.2 Myers Lists as Trees
The key idea that we will frequently use in this paper is to view Myers lists as trees due to
their recursive structure, which gives us greater intuition on how lookups can be performed in
logarithmically many pointers. The way to do so is shown in Figure 5b: given a region 𝑃𝑘 with
sub-regions 𝑄𝑘−1 and 𝑅𝑘−1, all the cells excluding the last cell of 𝑃𝑘 can be viewed as a tree rooted
by its first cell, and 𝑄𝑘−1 and 𝑅𝑘−1 are its left and right subtrees, respectively.

An example of this is shown in Figure 6, which is the same as the Myers list shown in Figure 4,
rearranged to better show its tree structure. Cells 2 to 16 can be viewed as a tree rooted at cell 16,
and its left and right subtrees are rooted at cells 15 and 8, respectively.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 267. Publication date: August 2025.



Pushing the Information-Theoretic Limits of Random Access Lists 267:7

3.3 Lookups in Basic Myers Lists
As described in Section 1, lookup on a Myers list involves only a traversal across next and jump
pointers until the appropriate cell is reached. Myers [23] describes an algorithm for lookup which
we also re-state in the supplementary material. In essence, lookup can be expressed as the following
(assume len is within bounds):

lookup xs len = {
xs if xs.length = len

lookup xs.jump len if xs.jump.length ≥ len

lookup xs.next len otherwise

An example path taken by a lookup is shown in Figure 4. The thick arrows show the pointers
traversed when performing lookup on the list starting at cell 14, targeting the list starting at cell 2.
At cells 14, 11, 7 and 3, the jump pointer does not bring us past cell 2, and thus the jump pointer is
traversed. At cells 8 and 4, only the next pointer can be traversed to bring us to cell 2.

The tree view of basic Myers lists allows us to conceptually divide a traversal between two cells
src and dst into two phases:

– Outward phase: a traversal to the last cell of one of the enclosing regions of src, thereby
traversing out of a subtree containing src. This phase consists of following jump pointers,
shown as dashed arrows in Figure 4 and Figure 6.

– Inward phase: a descent into dst from the root of some tree containing dst. This phase
consists of following the pointers shown as black arrows in Figure 6.

An example of this is shown for the traversal from cell 14 to cell 2 in Figure 4 and Figure 6, where
the outward phase is shown as thick dashed arrows, while the inward phase is shown as thick
squiggly arrows. The outward phase traverses out of the subtree rooted at cell 15, arriving at cell 8.
The inward phase then descends into the tree rooted at cell 8, arriving at cell 2.

Being able to divide traversals into two phases, coupled with the tree view of Myers lists, allows
us to analyze the lookup performance of Myers lists via recurrence equations, instead of the analysis
via skew binary numbers as performed by Myers [23].

3.4 Analysis of Lookups in Basic Myers Lists
Now that we have built some intuition behind traversals between two cells of Myers lists, in this
subsection, we reproduce the result by Myers [23], giving an upper bound for the number of
pointers traversed when accessing an arbitrary element in a Myers list. This is the main result of
this subsection, shown as Theorem 3.1.

Theorem 3.1. Given a Myers list 𝐿 of length 𝑛 containing cells src and dst where src.length ≥
dst.length, the number of pointers traversed to get from src to dst is no greater than ⌈lg 𝑛⌉ for all
1 ≤ 𝑛 ≤ 4, and 3⌈lg 𝑛⌉ − 5 for all 𝑛 > 4.

In Section 3.2, we showed that regions of Myers lists can be viewed as trees. As such, we first
relate the degree of a region formed by a list and the number of cells in it.This is shown as Lemma 3.2.
Its proof is in the supplementary material; the intuition behind it is that the degree 𝑘 of a region
corresponds to one more than the height of the tree it can be viewed as.

Lemma 3.2. Given a basic Myers list 𝐿 of length 𝑛, the smallest basic Myers list 𝐿′ that contains 𝐿
as a suffix and forms a region of degree 𝑘 satisfies 𝑘 = ⌈lg 𝑛⌉.

The goal is to give an upper bound for the number of pointers traversed between arbitrary cells
in a Myers list 𝐿 of length 𝑛. Given Lemma 3.2, the approach we take is to do the same for a Myers
list of degree 𝑘 = ⌈lg 𝑛⌉ that contains 𝐿 as a suffix. Since every suffix of a Myers list is also a Myers
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list, this is also an upper bound for 𝐿. The reason for this approach is that, as we have shown in
Section 3.2, Myers lists that form complete regions assemble into perfect binary trees, which are
amenable to analysis via recurrence equations.

3.4.1 Preliminaries for Analysis of Lookups in Basic Myers Lists. For the rest of this subsection, we
assume 𝑃𝑘 is a region of a Myers list of degree 𝑘. In addition, we write tree(𝑃𝑘) to denote every cell
except the last cell of 𝑃𝑘—in other words, if 𝑘 > 0, tree(𝑃𝑘) are the cells of 𝑃𝑘 that can be viewed as
a tree. Finally, following the conventions in Section 3.1 and Section 3.2, every region 𝑃𝑘 of degree
𝑘 > 0 also contains two sub-regions of degree 𝑘 − 1, which we denote as 𝑄𝑘−1 and 𝑅𝑘−1.

3.4.2 Performance of Lookups in Basic Myers Lists. As described in Section 3.2, a traversal between
two arbitrary cells in a Myers list consists of an outward phase and an inward phase. Thus, we
analyze each phase before combining these results to give an upper bound of the path length for
any traversal. The upper bounds of the lengths of the outward and inward phases are shown as
Lemma 3.3 and Lemma 3.4, respectively.

Lemma 3.3. Let 𝑂𝑘 be the upper bound for the number of pointers traversed to get from an arbitrary
cell 𝑥 in tree(𝑃𝑘) to the last cell of 𝑃𝑘. For all 𝑘 > 0, 𝑂𝑘 = 𝑘.

Proof. We proceed by induction on 𝑘. When 𝑘 = 1, 𝑂1 = 1 since there is only one cell in tree(𝑃1),
and taking the next pointer brings us to the last cell of 𝑃1. When 𝑘 > 1, there are three possible
locations of 𝑥:
Case 1. 𝑥 is the first cell of 𝑃𝑘. In this case, the jump pointer takes us directly to the last cell,

therefore requiring only 1 pointer.
Case 2. 𝑥 is in tree(𝑄𝑘−1). This requires no more than 𝑂𝑘−1 pointer traversals to get to the last cell

in 𝑄𝑘−1, which is also the first cell of 𝑅𝑘−1. From the first cell of 𝑅𝑘−1, the jump pointer
takes us directly to the last cell of 𝑅𝑘−1, which is the last cell of 𝑃𝑘. As such, this path has
no more than 𝑂𝑘−1 + 1 pointers.

Case 3. 𝑥 is in tree(𝑅𝑘−1), thus requiring no more than 𝑂𝑘−1 pointer traversals.
Therefore, when 𝑘 > 1, 𝑂𝑘 = max(1, 𝑂𝑘−1 + 1, 𝑂𝑘−1). By the induction hypothesis, 𝑂𝑘−1 = 𝑘 − 1.
Thus, 𝑂𝑘 = max(1, 𝑂𝑘−1 + 1, 𝑂𝑘−1) = max(1, 𝑘, 𝑘 − 1) = 𝑘. Hence, 𝑂𝑘 = 𝑘 for all 𝑘 > 0. �

Lemma 3.4. Let 𝐼𝑘 be the upper bound for the number of pointers traversed to get from the first cell
of 𝑃𝑘 to an arbitrary cell 𝑥 in tree(𝑃𝑘). For all 𝑘 > 0, 𝐼𝑘 = 2𝑘 − 2.

Proof. We proceed by induction on 𝑘. When 𝑘 = 1, 𝐼1 = 0 = 2(1) − 2 because tree(𝑃1) has only
one cell. When 𝑘 > 1, there are three possible locations of 𝑥:
Case 1. 𝑥 is the first cell of 𝑃𝑘, thus the path has 0 pointers.
Case 2. 𝑥 is in tree(𝑄𝑘−1). We take the next pointer of the first cell of 𝑃𝑘 to the first cell 𝑐 of 𝑄𝑘−1.

The path from 𝑐 to 𝑥 has no more than 𝐼𝑘−1 pointers. Thus, in this case, path consists of
no more than 1 + 𝐼𝑘−1 pointers.

Case 3. 𝑥 is in tree(𝑅𝑘−1). From the first cell of 𝑃𝑘 we can take the next pointer then the jump
pointer to the first cell 𝑐 of 𝑅𝑘−1. The path from 𝑐 to 𝑥 has no more than 𝐼𝑘−1 pointers.
Thus, in this case, the path consists of no more than 2 + 𝐼𝑘−1 pointers.

Therefore, when 𝑘 > 1, 𝐼𝑘 = max(0, 1 + 𝐼𝑘−1, 2 + 𝐼𝑘−1). By the induction hypothesis, 𝐼𝑘−1 =
2(𝑘−1)−2 = 2𝑘−4. As such, 𝐼𝑘 = max(0, 1+𝐼𝑘−1, 2+𝐼𝑘−1) = max(0, 1+2𝑘−4, 2+2𝑘−4) = 2𝑘−2.
Hence, 𝐼𝑘 = 2𝑘 − 2 for all 𝑘 > 0. �

Now that the upper bounds for the lengths of the outward and inward phases of a traversal have
been found in Lemma 3.3 and Lemma 3.4, respectively, we prove Lemma 3.5, providing an upper
bound for the number of pointers traversed between any two cells.
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Lemma 3.5. Let 𝑇𝑘 be the upper bound for the number of pointers traversed to get from an arbitrary
cell src to an arbitrary cell dst where both src and dst are in 𝑃𝑘 and src.length ≥ dst.length.
For all 𝑘 ≥ 0, 𝑇𝑘 = max(𝑘, 3𝑘 − 5), i.e. 𝑇𝑘 = 𝑘 if 0 ≤ 𝑘 ≤ 2, 3𝑘 − 5 otherwise.

Proof. We proceed by induction on 𝑘. When 𝑘 = 0, 𝑇0 = 0 = max(0, 3(0) − 5) since 𝑃0 only has
one cell. When 𝑘 = 1, 𝑇1 = 1 = max(1, 3(1) − 5) since 𝑃1 only has two cells. When 𝑘 > 1, we can
group the locations of src and dst into four cases:
Case 1. src is the first cell in 𝑃𝑘. dst can either be in tree(𝑃𝑘) or be the last cell in 𝑃𝑘. Therefore,

the path from src to dst consists of no more than max(𝐼𝑘, 1) pointers.
Case 2. dst is the last cell in 𝑃𝑘. Therefore, the path consists of no more than 𝑂𝑘 pointers.
Case 3. Both src and dst are in tree(𝑄𝑘−1), or both are in tree(𝑅𝑘−1). Since the two cells are in

the same subregion of degree 𝑘 − 1, the path consists of no more than 𝑇𝑘−1 pointers.
Case 4. src is in tree(𝑄𝑘−1) and dst is in tree(𝑅𝑘−1). The path consists of a traversal from src to

the last cell of 𝑄𝑘−1 (which is also the first cell of 𝑅𝑘−1) in no more than 𝑂𝑘−1 pointers,
then descending to dst in no more than 𝐼𝑘−1 pointers. As such, this path has no more
than 𝑂𝑘−1 + 𝐼𝑘−1 pointers.

Therefore, when 𝑘 > 1, 𝑇𝑘 = max(𝐼𝑘, 1, 𝑂𝑘, 𝑇𝑘−1, 𝑂𝑘−1 + 𝐼𝑘−1). By Lemma 3.3 and Lemma 3.4, for
all 𝑘 > 0, 𝑂𝑘 = 𝑘 and 𝐼𝑘 = 2𝑘 − 2. As such, 𝑇𝑘 = max(𝐼𝑘, 1, 𝑂𝑘, 𝑇𝑘−1, 𝑂𝑘−1 + 𝐼𝑘−1) = max(2𝑘 −
2, 1, 𝑘, 𝑇𝑘−1, 3𝑘 − 5) = max(𝑘, 𝑇𝑘−1, 3𝑘 − 5). By the induction hypothesis, 𝑇𝑘−1 = max(𝑘 − 1, 3(𝑘 −
1) − 5) = max(𝑘 − 1, 3𝑘 − 8). This means that 𝑇𝑘 = max(𝑘, 𝑘 − 1, 3𝑘 − 8, 3𝑘 − 5) = max(𝑘, 3𝑘 − 5).
Hence, 𝑇𝑘 = max(𝑘, 3𝑘 − 5) for all 𝑘 ≥ 0. �

Overall, given a Myers list 𝐿 of length 𝑛, by Lemma 3.2, the smallest Myers list 𝐿′ containing 𝐿 as
a suffix and forms a region of degree 𝑘 satisfies 𝑘 = ⌈lg 𝑛⌉. By Lemma 3.5, the path length between
two arbitrary cells in 𝐿′ is no greater than 𝑇⌈lg 𝑛⌉ = max(⌈lg 𝑛⌉, 3⌈lg 𝑛⌉ − 5). Since 𝐿 is a suffix of
𝐿′, the path length between any arbitrary cells in 𝐿 is also no greater than max(⌈lg 𝑛⌉, 3⌈lg 𝑛⌉ − 5),
thereby proving Theorem 3.1.

4 Improved Myers Lists
This section presents a modification to the construction rule for Myers lists that improves the worst
case path length from 3 ⌈lg 𝑛⌉ − 5 to 2 ⌈lg (𝑛 + 1)⌉ − 3. We call this new data structure improved
Myers lists. The construction rule for improved Myers lists is shown in Figure 7. Following the same
format in Section 3, Section 4.1 presents how improved Myers lists are constructed, Section 4.2
describes lookups in improved Myers lists, and Section 4.3 analyzes the performance of lookups in
improved Myers lists.

4.1 Construction of Improved Myers Lists
Section 3.4 shows that the upper bounds of the path lengths for the outward and inward phases are
𝑘 and 2𝑘 + 𝑂(1), respectively. The inward phase cost is greater because getting from the root of a
tree to the root of its right subtree requires traversing two pointers. By modifying the list so that
the inward phase of a traversal requires only 𝑘 pointer traversals, the total cost of lookups can be
brought down to 2𝑘 + 𝑂(1) pointers. A modification to Myers lists that allows this is to have the
jump pointer of the first cell of every region point to the first cell of its second sub-region. This is
so that accessing the root of either subtree is done with one pointer traversal.2

2Though we present our changes as a straightforward design narrative, discovering this involved experimentation with
many different construction rules. At one point we enumerated as many construction rules as we could think of and
analyzed each. This is the one for which the worst case is the best. The ease with which different construction rules could
be enumerated is a strength of the recursive construction rule compared to the skew-binary numbers as presented in [23].
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𝑄𝑘−1 𝑅𝑘−1
𝑙 𝑛 𝑚 𝑗 𝑖

(a) Flat view of construction rule.

𝑙
𝑛

𝑚

𝑗

𝑖
𝑄𝑘−1 𝑅𝑘−1

(b) Tree view of construction rule.

Fig. 7. Construction rule for region of improved Myers lists of degree 𝑘.

Improved Myers lists consist of cells of the same type as shown in Figure 1. However, we use the
new recursive construction rule shown in Figure 7 to characterize the structure of improved Myers
lists. The differences between this new construction rule and the one from Section 3.1 are:

(1) the jump pointer of the first cell of a region 𝑃𝑘 now points to the first cell of the second
subregion 𝑅𝑘−1 instead of the last cell of 𝑃𝑘, and

(2) subregions 𝑄𝑘−1 and 𝑅𝑘−1 no longer share cells.

This new construction rule allows regions to neatly assemble into perfect binary trees via the tree
view of the construction rule, shown in Figure 7b. Essentially, subregions 𝑄𝑘−1 and 𝑅𝑘−1 form the
left and right subtrees of a region. Unlike basic Myers lists, accessing the root of the right subtree
from the root of a tree can be done by traversing a single pointer.

An example of an improved Myers list of degree 3 and length 15 is shown in Figure 8. Note that
removing grey arrows from Figure 8b reveals a perfect binary tree.

Just like for basic Myers lists, the recursive construction rule gives rise to a straightforward
analysis of its improved lookup performance. Although an iterative construction rule is not
necessary for this analysis, nonetheless, we provide an implementation of cons for improved
Myers lists in the supplementary material.

4.2 Lookups in Improved Myers Lists
The rule and implementation of lookup for improved Myers lists is the same as that of basic Myers
lists as described in Section 3.3. Although improved Myers lists are structurally different to basic
Myers lists, we can still divide a traversal between two arbitrary cells src and dst into phases in a
similar manner:

– Outward phase: a traversal to the last cell of one of the regions containing src, i.e., traversing
to the rightmost leaf of one of the subtrees containing src. This is done by descending via
jump pointers to the leaf layer, then taking jump pointers to the desired rightmost leaf.

– From the rightmost leaf, taking the next pointer brings us to the root of some subtree
containing dst.

– Inward phase: a descent to dst.

For example, the traversal from cell 13 to cell 2 in Figure 8 consists of (1) the outward phase,
which is the descent to cell 8 via pointers marked by thick dashed arrows, (2) the next pointer to
cell 7 marked by a thick solid arrow, and (3) the inward phase, which is the descent to cell 2 marked
by thick squiggly arrows.

The inward phase of a traversal can now be viewed as a descent into a perfect binary tree,
providing some intuition behind its reduced cost.
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(a) Flat view of example of improved Myers list.
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(b) The improved Myers list shown in Figure 8a but laid out as a tree.

Fig. 8. An example improved Myers list of length 15. The traversal from cell 13 to cell 2 consists of (1) the
outward phase shown as thick dashed arrows to cell 8, (2) the next pointer shown as a thick solid arrow

to cell 7, and finally (3) the inward phase shown as thick squiggly arrows to cell 2.

4.3 Analysis of Lookups in Improved Myers Lists
As with Section 3.4, we analyze the number of pointers traversed when performing lookups in
an improved Myers lists. The structure and techniques used in this analysis are the same as in
Section 3.4. Hence, this subsection is brief. The main result of this subsection is Theorem 4.1.

Theorem 4.1. Given an improved Myers list 𝐿 of length 𝑛 containing arbitrary cells src and dst
such that src.length ≥ dst.length, the number of pointers traversed to get from src to dst is 0
for 𝑛 = 1 and no greater than 2⌈lg(𝑛 + 1)⌉ − 3 for all 𝑛 > 1.

First, we relate the degree of regions and the length of improved Myers lists, shown as Lemma 4.2.
We relegate its proof to the supplementary material to save space; the intuition behind it is that an
improved Myers list of degree 𝑘 can be viewed as a perfect binary tree of height 𝑘.

Lemma 4.2. Given an improved Myers list 𝐿 of length 𝑛, the smallest improved Myers list 𝐿′ that
contains 𝐿 as a suffix and forms a region of degree 𝑘 satisfies 𝑘 = ⌈lg(𝑛 + 1)⌉ − 1.

4.3.1 Preliminaries for Analysis of Lookups in Improved Myers Lists. For the rest of the analysis,
we assume 𝑃𝑘 is a region of an improved Myers list of degree 𝑘. Following the conventions in
Section 4.1, every region 𝑃𝑘 of degree 𝑘 > 0 also contains two sub-regions of degree 𝑘 − 1, which
we denote by 𝑄𝑘−1 and 𝑅𝑘−1.
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4.3.2 Performance of Lookups in Improved Myers Lists. Unlike Section 3.4, we analyze the inward
phase path length first (Lemma 4.3), since the outward phase (Lemma 4.4) also involves a descent
into the leaf layer. Then, like Section 3.4, after analyzing the path lengths of the outward and inward
phases, we get the path length of any traversal (Lemma 4.5), allowing us to prove Theorem 4.1.

Lemma 4.3. Let 𝐼𝑘 be the upper bound for the number of pointers traversed to get from the first cell
of 𝑃𝑘 to an arbitrary cell 𝑥 in 𝑃𝑘. For all 𝑘 ≥ 0, 𝐼𝑘 = 𝑘.

Proof. We proceed by induction on 𝑘. When 𝑘 = 0, 𝐼0 = 0 since 𝑃0 consists of one cell. When
𝑘 > 0, there are three possible locations of 𝑥:
Case 1. 𝑥 is the first cell of 𝑃𝑘, and thus the path has 0 pointers.
Case 2. 𝑥 is in 𝑄𝑘−1. We take the next pointer to the first cell in 𝑄𝑘−1, then take up to 𝐼𝑘−1

pointers to reach 𝑥, for a total of up to 1 + 𝐼𝑘−1 pointers.
Case 3. 𝑥 is in 𝑅𝑘−1. We take the jump pointer to the first cell in 𝑅𝑘−1, then take up to 𝐼𝑘−1 pointers

to reach 𝑥, for a total of up to 1 + 𝐼𝑘−1 pointers.
Therefore, when 𝑘 > 0, 𝐼𝑘 = max(0, 1 + 𝐼𝑘−1). By the induction hypothesis, 𝐼𝑘−1 = 𝑘 − 1, thus
𝐼𝑘 = max(0, 1 + 𝐼𝑘−1) = max(0, 1 + 𝑘 − 1) = 𝑘. Hence, 𝐼𝑘 = 𝑘 for all 𝑘 ≥ 0. �

Lemma 4.4. Let 𝑂𝑘 be the upper bound for the number of pointers traversed to get from an arbitrary
cell 𝑥 in 𝑃𝑘 to the last cell of 𝑃𝑘. For all 𝑘 ≥ 0, 𝑂𝑘 = 𝑘.

Proof. We proceed by induction on 𝑘. When 𝑘 = 0, 𝑂0 = 0 since there is only one cell in 𝑃0.
When 𝑘 > 0, there are three possible locations of 𝑥:
Case 1. 𝑥 is the first cell of 𝑃𝑘, and thus the path consists of nomore than 𝐼𝑘 pointers. By Lemma 4.3,

𝐼𝑘 = 𝑘, therefore this path has no more than 𝑘 pointers.
Case 2. 𝑥 is in 𝑄𝑘−1. Therefore, we traverse up to 𝑂𝑘−1 pointers to go from 𝑥 to the last cell in

𝑄𝑘−1, then one jump pointer to arrive at the last cell in 𝑃𝑘, therefore requiring up to
𝑂𝑘−1 + 1 pointers.

Case 3. 𝑥 is in 𝑅𝑘−1, therefore requiring up to 𝑂𝑘−1 pointers to get to the last cell of 𝑅𝑘−1, which
is the last cell of 𝑃𝑘.

Therefore, when 𝑘 > 0, 𝑂𝑘 = max(𝑘, 𝑂𝑘−1 + 1, 𝑂𝑘−1). By the induction hypothesis, 𝑂𝑘−1 = 𝑘 − 1,
thus, 𝑂𝑘 = max(𝑘, 𝑂𝑘−1 + 1, 𝑂𝑘−1) = max(𝑘, 𝑘 − 1 + 1, 𝑘 − 1) = 𝑘. Hence, 𝑂𝑘 = 𝑘 for all 𝑘 ≥ 0. �

Lemma 4.5. Let 𝑇𝑘 be the upper bound for the total number of pointers traversed to get from an
arbitrary cell src to an arbitrary cell dst where both src and dst are in 𝑃𝑘 and src.length ≥
dst.length. For all 𝑘 ≥ 0, 𝑇𝑘 = max(𝑘, 2𝑘 − 1), i.e., 𝑇𝑘 = 0 if 𝑘 = 0, 2𝑘 − 1 otherwise.

Proof. We proceed by induction on 𝑘. When 𝑘 = 0, 𝑇0 = 0 = max(0, 2(0) − 1) because 𝑃0 only
has one cell. When 𝑘 > 0, the locations of src and dst belong to one of four cases:
Case 1. src is the first cell of 𝑃𝑘. The path in this case consists of no more than 𝐼𝑘 pointers.
Case 2. dst is the last cell of 𝑃𝑘. The path in this case consists of no more than 𝑂𝑘 pointers.
Case 3. Both src and dst are in 𝑄𝑘−1 or both are in 𝑅𝑘−1. Since both cells are in the same

sub-region, the path consists of no more than 𝑇𝑘−1 pointers.
Case 4. src is in 𝑄𝑘−1 and dst is in 𝑅𝑘−1. The path consists of the outward phase, having up to

𝑂𝑘−1 pointers from src to the last cell 𝑚 of 𝑄𝑘−1. From 𝑚, the next pointer goes to the
first cell 𝑗 of 𝑅𝑘−1. Finally, the inward phase consists of up to 𝐼𝑘−1 pointers to descend
from 𝑗 into dst. Overall, the path consists of no more than 𝑂𝑘−1 + 𝐼𝑘−1 + 1 pointers.

Thus, 𝑇𝑘 = max(𝐼𝑘, 𝑂𝑘, 𝑇𝑘−1, 𝑂𝑘−1 + 𝐼𝑘−1 + 1) pointers for all 𝑘 > 0. By Lemma 4.3 and Lemma 4.4,
𝑂𝑘 = 𝐼𝑘 = 𝑘 for all 𝑘 ≥ 0, thus 𝑇𝑘 = max(𝐼𝑘, 𝑂𝑘, 𝑇𝑘−1, 𝑂𝑘−1 + 𝐼𝑘−1 + 1) = max(𝑘, 𝑇𝑘−1, 2𝑘 − 1). By
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the induction hypothesis, 𝑇𝑘−1 = max(𝑘 − 1, 2(𝑘 − 1) − 1), as such, 𝑇𝑘 = max(𝑘, 𝑇𝑘−1, 2𝑘 − 1) =
max(𝑘, 𝑘 − 1, 2𝑘 − 3, 2𝑘 − 1) = max(𝑘, 2𝑘 − 1). Hence, 𝑇𝑘 = max(𝑘, 2𝑘 − 1) for all 𝑘 ≥ 0. �

Finally, Theorem 4.1 is a consequence of Lemma 4.2 and Lemma 4.5.

5 Advanced Myers Lists
In the previous section, we modified where the jump pointer of cells in basic Myers lists points
to, arriving at improved Myers lists which can be viewed as perfect binary trees with each cell
pointing to the roots of its subtrees. The result is that, as shown in Section 4.3, lookups in improved
Myers lists can be performed by traversing no more than 2⌈lg(𝑛 + 1)⌉ − 3 pointers. However, as
discussed in Section 1, information theory places a lower bound of ⌈lg(𝑛 + 1)⌉ − 1 for lookups. We
thus ask the question: can we do better?

In this section, we present a modification to improved Myers lists so that traversals between
any two cells comes arbitrarily close to this theoretical bound—given any 𝜎 ≥ 1, the maximum
path length is ⌊(1 + 1

𝜎) ⌊lg 𝑛⌋⌋ + 𝜎 + 9. This trades a smaller coefficient in front of lg 𝑛 for a larger
constant at the end. For example, when 𝜎 = 4, the maximum path length is ⌊ 54 ⌊lg 𝑛⌋⌋ + 13. When
𝜎 = 8, it is ⌊ 98 ⌊lg 𝑛⌋⌋ + 17. We call this new data structure advanced Myers lists.

Like basic and improved Myers lists, advanced Myers lists consist of cells whose type is shown
in Figure 1. The only difference between advanced Myers lists and the other variants is where the
jump pointer of each cell points to.

Although advanced Myers lists achieve lookups in fewer pointer traversals, they have limitations.
Firstly, advanced Myers lists are significantly more complex and harder to implement. Secondly,
the time to determine the shortest path from one node to another is greater, although the traversal
is shorter. Thus, advanced Myers lists may not be appropriate for in-memory lists, but they may be
useful for applications where the cost of pointer traversals is high relative to other computations,
such as when pointer traversals involve network access. As such, in our discussion of advanced
Myers lists, we set aside concerns of time complexity in constructing or choosing paths through
these lists, and focus solely on the path length between two cells.

5.1 Construction of Advanced Myers Lists
In Section 4, we showed that the costs of both the outward and inward phases of a traversal are
approximately lg 𝑛 each, bringing the total cost to approximately 2 lg 𝑛. Since lg 𝑛 is already the
information-theoretic limit, further optimization requires balancing the lengths of the phases so that
the overall path length is approximately lg 𝑛. Conceptually, the approach we take is to add outgoing
pointers (in addition to the next and jump pointers) to the nodes of the tree structure formed by
improved Myers lists. These additional pointers allow us to skip a portion of the outward phase,
where the length of the skipped portion depends on the length of the inward phase. Essentially,
when the inward phase is long, the additional pointers let us keep the outward phase short; when
the inward phase is short, the outward phase is allowed to be long. Balancing the lengths of the
two phases in this way allows the length of the entire path to be approximately lg 𝑛.

However, adding additional pointers to cells violates our requirement of retaining the cell
structure of Myers lists. Thus, we conceptually group some cells together and repurpose their jump
pointers to serve as the additional pointers. We use the term logical node to describe such a group
of cells, and for clarity, describe individual cells in logical nodes as physical cells.

Logical nodes come in three flavours as shown in Figure 9: (1) normal nodes consist of a single
physical cell with next and jump pointers pointing to left and right children as before, (2) skip
nodes consist of two physical cells top and bottom with an internal pointer top.next that points
to bottom, and three outgoing pointers uncle, left and right, and (3) leaf nodes consist of three
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(a) Normal Node
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(b) Skip Node
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greater

next
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(c) Leaf Node. greater
pointers point to the last cell

of a leaf node.

Fig. 9. Node types. Solid arrows: cell next pointers. Dashed, dotted and dashdotted arrows: cell jump
pointers. Normal box : normal nodes. Double-bordered box : skip nodes. Box with rounded corners : leaf
nodes. Dotted arrows : inc pointers. Dashdotted arrows : uncle pointers. Dashed arrows coming out

of leaf nodes : greater pointers.
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𝜎 = 2

Fig. 10. An example advanced Myers list with 15 logical nodes and 33 physical cells where 𝜎 = 2 with the
conventions shown in Figure 9. The internal cell structure of each node is not shown. The inc pointer of
some leaves point to the same node as its greater pointer, such inc pointers are not shown. Removing

uncle and inc pointers recovers the structure of the improved Myers list in Figure 8b.

physical cells top, middle and bottom with two internal pointers top.next pointing to middle
and middle.next pointing to bottom, and four outgoing pointers inc, greater, uncle and next.

The construction of the tree formed by an advanced Myers list is the same as that of improved
Myers lists, with rules shown in Figure 7. However, the nodes of the tree formed by the list are
logical nodes, instead of physical cells. The leaf layer of the tree comprises of leaf nodes, and every
𝜎 layers above the leaf layer are skip layers, comprised of skip nodes. The remaining nodes in the
tree are normal nodes.

An example advanced Myers list is shown in Figure 10. Removing uncle and inc pointers
recovers the structure of an improved Myers list of length 15, as shown in Figure 8b. Although the
list has 15 logical nodes, since each leaf node has three physical cells and each skip node has two
physical cells, this list has a total of 33 physical cells.

In the following subsections, we describe the purpose of skip and leaf nodes and the problems
they overcome. We temporarily ignore internal cell pointers and focus on the paths through the
logical tree to build intuition behind the tree structure; our analysis of path lengths in Section 5.2
accounts for internal cell pointers.
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𝑎

𝑠 𝑢3

𝑢2

𝑢0

𝑑

Fig. 11. An example of uncles, target uncles and ancestor subtrees. The uncles of node 𝑠 are the nodes
labelled 𝑢𝑘, where each 𝑢𝑘 has right-edge depth 𝑘. targetUncle(𝑠, 𝑑) is 𝑢0 (red). Nodes in subtree rooted at 𝑎

form ancestorSubtree(𝑠, 𝑑) (blue).
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Fig. 12. An example traversal from node 14 to node 2 for the advanced Myers list shown in Figure 10. Some
pointers omitted for clarity. Thick arrows show two possible paths for the traversal: (1) without uncle

pointers, the traversal requires a descent to node 8; (2) with uncle pointers, we can jump directly to node 7
from node 14 via its uncle pointer.

5.1.1 Double Descent and Skip Layers. When traversing from a src node to a dst node, if src is
not an ancestor of dst, the traversal always passes through the right child of the least common
ancestor of src and dst. We call this the target uncle of src and dst (written as targetUncle(src, dst)).
Essentially, the traversal from src to dst consists of a traversal from src to targetUncle(src, dst), then
a descent to dst. An example of the target uncle is shown in Figure 11, where the target uncle of 𝑠
and 𝑑 is 𝑢0. As another example, in Figure 12, the target uncle of nodes 14 and 2 is node 7.

In an improved Myers list, the traversal from src to targetUncle(src, dst) requires a descent to the
leaf layer. For example, in Figure 12, if the list were an improved Myers list, to get from cell 14 to
cell 2, we must first descend to cell 8 which is the rightmost leaf of the left subtree, take the next
pointer to cell 7 (the target uncle), then descend to cell 2. This path descends the height of the tree
twice.

The uncle pointer of skip nodes and leaf nodes overcomes this hurdle. The uncle pointer of a
node 𝑛 points to one of the uncles of 𝑛, where uncles are defined in Definition 5.1. We want to set
up uncle pointers in a way such that as we descend from src, we can always choose a skip node or
leaf node 𝑠 that is a nearby descendant of src, and that the uncle pointer of 𝑠 points to the target
uncle. Once we have descended to 𝑠, we then take its uncle pointer directly to targetUncle(src, dst),
effectively skipping a portion of the descent from src.

Definition 5.1 (Uncle). A node 𝑢 is an uncle of a node 𝑛 if 𝑢 is the right sibling of 𝑛 or the right
sibling of some ancestor of 𝑛.

The way we set up uncle pointers first requires the observation that the length of the inward
phase depends on the depth of the target uncle. That is, if the target uncle is 𝑑 layers away from the
root of a tree with height 𝑘, then the length of the inward phase is no longer than 𝑘 − 𝑑. Since the
depth of a node depends on the number of elements that have been cons-ed to the front, we instead
formalize this in terms of right-edge depth, as defined in Definition 5.2.
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Fig. 13. Example tree with 𝜎 = 2 with each node of right-handed depth 𝑥 and right-edge depth 𝑦 is labeled
𝑥, 𝑦. Nodes with undefined right-handed depths are labeled −, 𝑦. inc and greater pointers omitted for

clarity.

Definition 5.2 (Right-Edge Depth). The right-edge depth (RED) of a node is the distance to the
closest ancestor that is along the rightmost path from the tree root.

The RED of a node does not change as the tree grows, and underestimates its true depth.Therefore,
if the target uncle has RED 𝑑, then the descent from the target uncle is no longer than 𝑘 −𝑑. Then, in
order to keep the overall path length within approximately 𝑘, the outward phase must be bounded
by approximately 𝑑. Thus, we ensure that by descending approximately 𝑑 layers from src, we can
get to a skip node or leaf node that points to the target uncle. To do so, we introduce the additional
notion of right-handed depth, defined in Definition 5.3.

Definition 5.3 (Right-Handed Depth). The right-handed depth (RHD) of a node is the distance to
the closest ancestor that is a left-hand child. For nodes along the rightmost path from the tree root,
RHD is undefined.

Our trick is then to let the uncle pointer of a node of RHD 𝑑 point to its uncle with RED 𝑑. In
other words, for every skip node or leaf node 𝑠, if 𝑠.uncle exists:

RHD(𝑠) = RED(𝑠.uncle)

This works because the uncle pointer of descendants of src whose RHD is 𝑑 will always point to
targetUncle(src, dst). This is shown in Lemma 5.4, which we prove in the supplementary material
to save space.

Lemma 5.4. Given logical nodes src and dst such that dst is not a descendant of src, for all descendants
𝑠 of src that is a skip node or leaf node, if RHD(𝑠) = RED(targetUncle(src, dst)) then 𝑠.uncle points
to targetUncle(src, dst).

Therefore, to traverse from src to dst, (1) descend to a skip node or leaf node 𝑠 with RHD 𝑑, then
(2) take the uncle pointer to targetUncle(src, dst), then finally (3) descend to dst. As we will later
show in Section 5.2, the length of the descent to 𝑠 is no longer than approximately 𝑑 +𝜎. This means
that the length of the entire path is approximately 𝑘 + 𝜎 + 1, where 𝑘 is the height of the tree.

An illustration of the right-handed depths, right-edge depths and uncle pointers of each node in
a tree where 𝜎 = 2 is shown in Figure 13. The uncle pointer of a node of RHD 𝑑 points to its uncle
with RED 𝑑. In Figure 10 and Figure 12, the uncle pointer of node 14 (of RHD 0) points to node 7
(of RED 0).
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Fig. 14. Two example traversals via lateral traversals across leaves, one from 𝑠1 to 𝑑 (Section 5.1.2), another
from 𝑠2 to 𝑑 (Section 5.1.3). Some parts of the tree structure omitted for clarity. RHD of each leaf shown. Node
𝑎 (blue), is the root of both ancestorSubtree(𝑠1, 𝑑) and ancestorSubtree(𝑠2, 𝑑). Thick arrows show the path of

the traversals.

An example traversal via uncle pointers is shown in Figure 12. By introducing uncle pointers,
the traversal from node 14 to node 2 no longer requires a descent to the leaf layer. Since the RED of
node 7 is 0, we just descend to a skip node or leaf node whose RHD is 0. Node 14 is itself a skip
node with RHD 0, so we take its uncle pointer directly to node 7, from which we descend to node
2 like before. (Note that the uncle pointer does not always point to a node at the same layer. That
is just a coincidence of this example.)

5.1.2 Falling Out of the Tree. The method described in Section 5.1.1 does not work if there is no
descendant skip node of the desired RHD. This happens when src is located too low in the tree or if
RED(targetUncle(src, dst)) is too large. This can be seen in Figure 14 where a skip/leaf node of RHD
2 is needed to get from 𝑠1 or 𝑠2 to 𝑑, but only leaf nodes of RHD 0 and 1 exist beneath 𝑠1 and 𝑠2.

The way we address this is to have the tree support lateral traversal across leaves via inc
pointers. The inc pointer of a leaf node ℓ points to the closest leaf node ℓ′ to the right of ℓ such
that RHD(ℓ′) = RHD(ℓ) + 1. This is so that from src, we can descend to a leaf node ℓ where
RHD(ℓ) < RED(targetUncle(src, dst)), traverse laterally via inc pointers to a leaf ℓ∗ such that
RHD(ℓ∗) = RED(targetUncle(src, dst)), then take its uncle pointer to targetUncle(src, dst).

However, traversing laterally using inc pointers may take us out of the subtree rooted at src.
Thus we must ask: will ℓ∗.uncle point to targetUncle(src, dst)? The answer is yes, as long as ℓ∗ is in
the ancestor subtree of src and dst, where ancestor subtrees are defined in Definition 5.5.

Definition 5.5 (Ancestor Subtree). Let src and dst be two nodes such that dst is not a descendant
of src. The ancestor subtree of src and dst, denoted ancestorSubtree(src, dst), is the tree rooted at 𝑎
where 𝑎 is the ancestor of src (or is src itself) such that targetUncle(src, dst) is its right sibling.

For example, in Figure 11, ancestorSubtree(𝑠, 𝑑) is the tree rooted at 𝑎, because the right sibling of
𝑎 is targetUncle(𝑠, 𝑑) = 𝑢0. Similarly, in Figure 14, ancestorSubtree(𝑠1, 𝑑) and ancestorSubtree(𝑠2, 𝑑)
are both rooted at node 𝑎, since its right sibling is 𝑢.
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The reason this works is that the uncle pointer of every leaf in ancestorSubtree(src, dst) whose
RHD is equal to RED(targetUncle(src, dst)) points to targetUncle(src, dst).This is stated as Lemma 5.6,
which we prove in the supplementary material to save space.

Lemma 5.6. Suppose we are given logical nodes src and dst in an advanced Myers list such that
dst is not a descendant of src. Let 𝑑 = RED(targetUncle(src, dst)). For all skip nodes or leaf nodes 𝑠 in
ancestorSubtree(src, dst), if RHD(𝑠) = 𝑑, then 𝑠.uncle points to targetUncle(src, dst).

Therefore, if there is no descendant of src that has RHD 𝑑 and is a skip or leaf node, as long as
there is a descendant of src that is a leaf ℓ of RHD less than 𝑑, we can descend to ℓ, then move
laterally with inc pointers until we arrive at ℓ∗ of RHD 𝑑. As long as ℓ∗ is within the ancestor
subtree, its uncle pointer brings us to targetUncle(src, dst). As we show in Section 5.2, the length of
the path from src to ℓ∗ is approximately 𝑑, thus the total path length in this case is approximately 𝑘.

An example of a traversal via inc pointers is shown in Figure 14. To get from 𝑠1 to 𝑑, descend to
the leaf with RHD 1 and take the inc pointer to the closest leaf with RHD 2. Since this leaf is still
within ancestorSubtree(𝑠1, 𝑑), taking its uncle pointer brings us to 𝑢, from which we can descend
to 𝑑 as per usual.

5.1.3 Swinging Out of the Tree. The final problem concerns cases where traversing inc pointers
takes us out of the ancestor subtree. An example of this is shown in Figure 14. In this example,
following inc pointers from the leaves of 𝑠2 would lead us to a leaf of RHD 2 that is a descendant
of 𝑑, from which 𝑑 is unreachable. Addressing this requires one further observation: because of
how the nodes of a tree are ordered, the target uncle is always the next node after the rightmost
leaf of the ancestor subtree. In this case, rather than following inc pointers to a leaf node of the
appropriate RHD, we instead want to reach the rightmost leaf of the ancestor subtree, then take its
next pointer to the target uncle.

We traverse to the rightmost leaf of the ancestor subtree by using greater pointers. The greater
pointer of a leaf ℓ points to the nearest leaf node ℓ′ to the right of ℓ such that RHD(ℓ′) > RHD(ℓ)
(rather than being greater by exactly 1). Since the rightmost leaf node of any subtree has the highest
RHD among the nodes within it, following greater pointers will always lead to it3. In fact, when
traversing laterally with inc pointers, if we arrive at a leaf ℓ′ whose inc pointer takes us out of the
ancestor subtree, either ℓ′ itself or ℓ′.greater is the rightmost leaf of the ancestor subtree. This is
stated as Lemma 5.7, which we prove in the supplementary material to save space.

Lemma 5.7. Suppose we have a node 𝑛 and some leaf ℓ that is a descendant of 𝑛, and RED(𝑛) > 0. If
ℓ.inc is not a descendant of 𝑛 or does not exist, then ℓ or ℓ.greater is the rightmost leaf descendant
of 𝑛.

Thus, whenever lateral traversal across leaves is demanded, we traverse laterally via inc pointers
until we either arrive at a leaf whose uncle pointer points to the target uncle, or arrive at a leaf
whose inc pointer escapes the ancestor subtree. In the latter case, we traverse to the rightmost leaf
of the ancestor subtree via the greater pointer (if we are not already there), then take the next
pointer to the target uncle. As we show in Section 5.2, in either case, we can arrive at the target
uncle in approximately 𝑑 pointers. Hence, the overall path length for either case is approximately 𝑘.

For example, in Figure 14, after descending from 𝑠2 to its leaf descendant with RHD 1, instead
of taking the inc pointer to the leaf descendant of 𝑑 with RHD 2, we take the greater pointer to
the rightmost leaf descendant of 𝑎, from which taking the next pointer brings us to 𝑢. Descending
from 𝑢 brings us to 𝑑, as per usual.
3greater pointers correspond to the jump pointers of leaves in improved Myers lists, which always traverse to the rightmost
leaf of the next enclosing subtree.
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5.1.4 Summary. We now have all the components necessary to describe the structure of the tree
formed by an advanced Myers list:

(1) Logical nodes form a binary tree.
(2) The leaf layer is comprised of leaf nodes.
(3) Every 𝜎 layers above the leaf layer are skip layers, comprised of skip nodes.
(4) For every skip/leaf node 𝑠, let 𝑑 = RHD(𝑠), then 𝑠.uncle points to the uncle of 𝑠 whose RED

is also 𝑑.
(5) The inc pointer of a leaf node ℓ points to the closest leaf node ℓ′ to the right of ℓ such that

RHD(ℓ′) = RHD(ℓ) + 1.
(6) The greater pointer of a leaf ℓ points to the nearest leaf node ℓ′ to the right of ℓ such that

RHD(ℓ′) > RHD(ℓ).
Paths from src to dst take one of the following forms:
(1) dst is a descendant of src. The path in this case is a descent down the tree.
(2) The previous case does not hold, but there exists a descendant skip node or leaf node 𝑠 whose

RHD is equal to the RED of the target uncle (let this be 𝑑). The path is a descent to 𝑠, the
uncle pointer to the target uncle, then a descent to dst.

(3) The previous case does not hold, but there is a leaf descendant of src whose RHD is less than
the RED of the target uncle. The path is a descent to the leaf layer, followed by a series inc
pointers until either (a) we arrive at a leaf within the ancestor subtree that has RHD 𝑑, in
which case we take the uncle pointer to the target uncle, or (b) we arrive at a leaf whose
inc pointer takes us out of the ancestor subtree, in which case we take the greater pointer
if we are not already at the rightmost leaf of the ancestor subtree, then the next pointer to
the target uncle. From the target uncle, we descend to dst.

(4) The previous cases do not hold, so src is a leaf whose RHD exceeds 𝑑. Traversing the next
pointer brings us to a non-leaf node where one of the previous three cases must apply.

For a logical tree of height 𝑘, the upper bound of the length of the inward and outward phases of
the traversal is 𝑘 − 𝑑 and 𝑑 + 𝜎 + 𝑂(1), respectively, where 𝑑 is the RED of the target uncle. Thus,
the length of the traversal is no greater than 𝑘 + 𝜎 + 𝑂(1).

5.2 Analysis of Lookups in Advanced Myers Lists
As with Section 3.4 and Section 4.3, we analyze the number of pointers traversed when performing
lookups in an advanced Myers list. The main result of this subsection is Theorem 5.8. We must
warn readers that the analysis is incredibly dry.

Theorem 5.8. Given an advanced Myers list 𝐿 of length 𝑛 that contains arbitrary cells src and dst
such that src.length ≥ dst.length and every 𝜎 layers of the logical tree formed by 𝐿 is a skip layer,
the number of pointers traversed to get from src to dst is no greater than (1 + 1/𝜎)⌊lg 𝑛⌋ + 𝜎 + 9.

Just like Section 3.4 and Section 4.3, the first step is to relate 𝜎, the height of the logical tree
formed by the list, and the number of physical cells in the list in Lemma 5.9, which we prove in the
supplementary material to save space.

Lemma 5.9. Given an advanced Myers list 𝐿 of length 𝑛 > 1, for all 𝜎 ≥ 1, the smallest advanced
Myers list 𝐿′ that contains 𝐿 as a suffix and forms a logical tree of height 𝑘 satisfies 𝑘 ≤ ⌊lg 𝑛⌋ − 1.

5.2.1 Preliminaries for Analysis of Lookups in Advanced Myers Lists. For the rest of this subsection,
assume that we are working with an advanced Myers list 𝐿 forming a logical tree of height 𝑘, such
that every 𝜎 layers above the leaf layer is a skip layer. In addition, the traversal of concern is between
two cells src and dst in logical nodes src and dst respectively, and that src.length ≥ dst.length.
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Unlike Section 5.1, our analysis in this section must account for internal cell pointers. Thus, to
distinguish paths in the logical tree (ignoring internal cell pointers) from the actual path via cell
pointers (including internal cell pointers), we use the term logical path to denote the former. The
length of the logical path is termed logical distance.

5.2.2 On Direct Descents. The first case is when src is a logical tree ancestor of dst. The path length
is shown in Lemma 5.10, which is the main result of this part of the analysis.

Lemma 5.10. If dst is a descendant of src, the path from src to dst has no more than (1+(1/𝜎))𝑘+2
pointers.

To give an upper bound of the path length in this case, we show the upper bound of the path
length of the general case (Lemma 5.11), i.e., a descent from any node of RED 𝑑 to any descendant.

Lemma 5.11. Suppose we have cells s and s' in logical nodes 𝑠 and 𝑠′ respectively, where 𝑠′ is a
descendant of 𝑠. Let 𝑑 = RED(𝑠). The path from s to s' consists of no more than (1 + 1/𝜎)𝑘 − (1 +
1/𝜎)𝑑 + 2 pointers.

Proof. Let depth(𝑠) be the logical distance from the tree root to 𝑠. The height of 𝑠 is 𝑘 − depth(𝑠).
Thus, the logical distance from 𝑠 to any of its descendants is not more than 𝑘 − depth(𝑠). Since RED
underestimates depth, i.e., 𝑑 ≤ depth(𝑠), the logical distance from 𝑠 to any of its descendants is no
more than 𝑘 − 𝑑. This logical path passes through up to (𝑘 − 𝑑)/𝜎 + 1 skip nodes and potentially
one leaf node, which adds up to (𝑘 − 𝑑)/𝜎 + 2 internal cell pointers. Thus, in total, the path consists
of no more than 𝑘 − 𝑑 + (𝑘 − 𝑑)/𝜎 + 2 pointers. �

Then, Lemma 5.10 is a simple consequence of Lemma 5.11, because in theworst case, RED(src) = 0.
Therefore, the path from src to dst has nomore than (1+1/𝜎)𝑘−(1+1/𝜎)(0)+2 = (1+(1/𝜎))𝑘+2
pointers.

5.2.3 On Traversals Through Descendant Skip Nodes. For the rest of the analysis, assume that src
is not an ancestor of dst in the logical tree. Thus, the path from src to dst involves traversing
from src to targetUncle(src, dst) then to dst. This part of the analysis gives an upper bound of the
length of the path for the scenario described in Section 5.1.1—where there exists a skip or leaf node
that points to targetUncle(src, dst) and is a descendant of src. The main result of this part of the
analysis is Lemma 5.12.

Lemma 5.12. Let 𝑑 = RED(targetUncle(src, dst)). If there exists a logical descendant of src that is a
skip node or leaf node with RHD 𝑑 whose uncle pointer is reachable from src, then the path from src
to dst has no more than (1 + 1/𝜎)𝑘 + 𝜎 + 6 pointers.

First, we prove Lemma 5.13, which shows showing the existence of descendants of nodes with
specific right-handed depths as long as the node is sufficiently high up in the tree.

Lemma 5.13. Given logical nodes 𝑠 and 𝑠′, if (1) 𝑠′ is a logical descendant of 𝑠 and (2) the logical
distance from 𝑠 to 𝑠′ is 𝑑 where 𝑑 > 0, then for all 0 ≤ 𝑖 < 𝑑, there exists node 𝑠𝑖 such that (1) 𝑠𝑖 is a
descendant of 𝑠, (2) the logical distance from 𝑠 to 𝑠𝑖 is also 𝑑 and (3) 𝑠𝑖 has right-handed depth 𝑖.

Proof. From 𝑠, take 𝑑 − 𝑖 left pointers to a node 𝑥. 𝑑 − 𝑖 is nonzero, guaranteeing that 𝑥 has
right-handed depth 0. From 𝑥, take 𝑖 right pointers to 𝑠𝑖 with right-handed depth 𝑖. �

Using Lemma 5.13, we prove Lemma 5.14, which gives an upper bound for the number of pointers
needed to traverse to a descendant skip or leaf node of the appropriate RHD.
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Lemma 5.14. Given a cell s in logical node 𝑠, if there exists a skip or leaf node 𝑠′ where (1) let
𝑑 = RHD(𝑠′), (2) 𝑠′ is a descendant of 𝑠, (3) the cell containing the uncle pointer in 𝑠′ is reachable
from s, then there exists a skip or leaf node 𝑠∗ such that (1) RHD(𝑠∗) = 𝑑, (2) 𝑠∗ is a descendant of 𝑠,
(3) the cell containing the uncle pointer in 𝑠∗ is reachable from s and (4) the traversal from s to the
cell containing the uncle pointer in 𝑠∗ has no more than (1 + 1/𝜎)𝑑 + 𝜎 + 3 pointers.

Proof. We proceed by case analysis.
Case 1. The logical distance from 𝑠 to 𝑠′ is no greater than 𝑑 + 𝜎. Then, let 𝑠∗ = 𝑠′. Let the cell

containing the uncle pointer in 𝑠′ be s'. The path from s to s' passes through up to
𝑑/𝜎 + 2 skip/leaf nodes. If 𝑠′ is a leaf node then we must add one more pointer to get to
s'. Therefore, the total number of pointers traversed to get from s to s' is no more than
𝑑 + 𝜎 + 𝑑/𝜎 + 3.

Case 2. The logical distance from 𝑠 to 𝑠′ is greater than 𝑑 + 𝜎. This means that the logical height
of 𝑠 is at least 𝑑 + 𝜎 + 1. This must also mean that there exists 0 ≤ 𝑏 < 𝜎 where 𝑏 layers
below 𝑠 is a skip or leaf layer, and any 𝑎𝜎 + 𝑏 layers below 𝑠 is a skip or leaf layer as long
as 𝑎 ≥ 0 and 𝑎𝜎 + 𝑏 ≤ 𝑑 + 𝜎 + 1. Now, choose some 𝑎′ ≥ 0 satisfying 𝑑 < 𝑎′𝜎 + 𝑏 ≤ 𝑑 + 𝜎.
By Lemma 5.13, there exists a node 𝑠∗ that has right-handed depth 𝑑 that is 𝑎′𝜎 + 𝑏 layers
below 𝑠 (therefore a skip or leaf node) and is a descendant of 𝑠. The logical distance from
𝑠 to 𝑠∗ is thus no greater than 𝑑 + 𝜎. With similar arguments to Case 1, the traversal from
s to the cell containing the uncle pointer in 𝑠∗ has no more than (1 + 1/𝜎)𝑑 + 𝜎 + 3
pointers.

�

Finally, to prove Lemma 5.12, by Lemma 5.14, we can traverse no more than (1 + 1/𝜎)𝑑 + 𝜎 + 3
pointers from src to arrive at the cell in some skip or leaf node 𝑠 with RHD 𝑑 containing an uncle
pointer. Then, we take the uncle pointer, which by Lemma 5.4 brings us to targetUncle(src, dst).
Lastly, by Lemma 5.11 we traverse (1 + 1/𝜎)𝑘 − (1 + 1/𝜎)𝑑 + 2 pointers to arrive at dst. The total
path length is no greater than (1 + 1/𝜎)𝑘 + 𝜎 + 6.

5.2.4 On Lateral Traversals via Leaf Nodes. For the rest of the analysis, further assume that there is
no descendant of src that (1) is a skip/leaf node, (2) has RHD equal to RED(targetUncle(src, dst))
and (3) whose uncle pointer is reachable from src. In this case, as described in Section 5.1.2 and
Section 5.1.3, we could descend to a leaf nodewhose RHD is less than the RED of targetUncle(src, dst),
traverse laterally to the right leaf node, and go to targetUncle(src, dst) to descend from there as per
usual. The main result in this part of the analysis is Lemma 5.15.

Lemma 5.15. Let 𝑑 = RED(targetUncle(src, dst)). If there exists a leaf node that (1) is a descendant
of src, (2) whose inc pointer is reachable from src and (3) has RHD less than 𝑑, then the path from
src to dst has no more than (1 + 1/𝜎)𝑘 + 7 pointers.

We first prove Lemma 5.16, which gives an upper bound of the height of src.

Lemma 5.16. Given a logical node 𝑠, if there does not exist a descendant skip node or leaf node of
right-handed depth 𝑑 whose uncle pointer is reachable from 𝑠, then, the logical distance from 𝑠 to any
leaf node that is a descendant of 𝑠 is no more than 𝑑.

Proof. If the logical distance from 𝑠 to any leaf node that is a descendant of 𝑠 is at least 𝑑 + 1,
then by Lemma 5.13, there must be a descendant leaf node of RHD 𝑑. The cell containing the uncle
pointer in a leaf node is the last cell of the leaf, thus always reachable. �

Then to prove Lemma 5.15, we first consider the cases of the relationship between src and the
leaf layer to determine the starting leaf ℓ.
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Case 1. src is a leaf, and src is the first cell of src. Let ℓ = src. The path from src to the first cell
of ℓ has 0 pointers.

Case 2. src is not a leaf. Thus, the height of src, ℎ, must be greater than 0. This also means that
ℎ ≤ 𝑑, otherwise, by Lemma 5.13, there must be a leaf descendant of src whose RHD is
equal to 𝑑, contradicting the conditions of this case.
From src, take one left pointer, then ℎ−1 right pointers down to leaf ℓ. Thus, RHD(ℓ) =
ℎ − 1, and the logical distance from src to ℓ is ℎ = RHD(ℓ) + 1. This logical path passes
through up to (RHD(ℓ) + 1)/𝜎 skip nodes, thus no more than (RHD(ℓ) + 1)/𝜎 additional
internal cell pointers are traversed. In total, the path from src to the first cell of ℓ has no
more than (1 + 1/𝜎)RHD(ℓ) + 1/𝜎 + 1 pointers.

In either case, the path from src to the first cell of ℓ has no more than (1 + 1/𝜎)RHD(ℓ) + 1/𝜎 + 1
pointers.

Clearly, ℓ is within the ancestor subtree. Thus, one of two cases must happen when traversing
from ℓ to targetUncle(src, dst):
Case 1. Traversing 𝑑−RHD(ℓ) inc pointers brings us to a leaf node ℓ∗ of right-handed depth 𝑑 that

is still within ancestorSubtree(src, dst). From ℓ∗ we traverse two internal pointers to reach
the last cell of ℓ∗, then by Lemma 5.6, the uncle pointer takes us to targetUncle(src, dst).
The path from ℓ to targetUncle(src, dst) has 𝑑 − RHD(ℓ) + 3 pointers.

Case 2. Traversing some 0 ≤ 𝑥 < 𝑑 − RHD(ℓ) inc pointers brings us to a leaf node ℓ𝑟 such
that ℓ𝑟.inc is either not within ancestorSubtree(src, dst) or does not exist. The root of
ancestorSubtree(src, dst) is always a left child and thus never has RED 0, therefore, by
Lemma 5.7, ℓ𝑟 or ℓ𝑟.greater is the rightmost leaf of ancestorSubtree(src, dst). Thus, from
ℓ𝑟, take one pointer to the middle cell of ℓ, take one pointer (either greater or the
internal next pointer) to the last cell of the rightmost leaf of ancestorSubtree(src, dst), and
take the next pointer to targetUncle(src, dst). The path from ℓ to targetUncle(src, dst) has
𝑥 + 3 < 𝑑 − RHD(ℓ) + 3 pointers.

In either case, the path from ℓ to targetUncle(src, dst) has no more than 𝑑 − RHD(ℓ) + 3 pointers.
By Lemma 5.11 we can descend from targetUncle(src, dst) to any cell in dst in no more than

(1 + 1/𝜎)𝑘 − (1 + 1/𝜎)𝑑 + 2 pointers. Thus, overall, the path has no more than (1 + 1/𝜎)RHD(ℓ) +
1/𝜎 + 1 + 𝑑 − RHD(ℓ) + 3 + (1 + 1/𝜎)𝑘 − (1 + 1/𝜎)𝑑 + 2 ≤ (1 + 1/𝜎)𝑘 + 7 pointers.

5.2.5 The Length of All Possible Paths. With the preceding results, we can prove Lemma 5.17,
which gives an upper bound for path length of the traversal from src to dst.

Lemma 5.17. The path from src to dst has no more than (1 + 1/𝜎)𝑘 + 𝜎 + 10 pointers.

Proof. Logical paths from src to dst belong to one of six cases:
Case 1. dst is a descendant of src. By Lemma 5.10, the path from src to dst has no more than

(1 + (1/𝜎))𝑘 + 2 pointers.
Case 2. Case 1 does not apply, but there exists a skip/leaf node 𝑠 that (1) is a logical descendant

of src, (2) RHD(𝑠) = RED(targetUncle(src, dst)), and (3) whose uncle pointer is reachable
from src. By Lemma 5.12, the path from src to dst has no more than (1+(1/𝜎))𝑘 +𝜎 +6
pointers.

Case 3. Cases 1 and 2 do not apply, but there exists a leaf node with (1) RHD less than
RED(targetUncle(src, dst)), (2) is a logical descendant of src, and (3) its inc pointer is
reachable from src. By Lemma 5.15, the path from src to dst has no more than (1 +
(1/𝜎))𝑘 + 7 pointers.

Case 4. Cases 1, 2 and 3 do not apply, but src is a leaf node whose RHD exceeds
RED(targetUncle(src, dst)). Taking up to three cell next pointers reaches a non-leaf node,
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Variant Upper Bound

Basic {
⌈lg 𝑛⌉ if 1 ≤ 𝑛 ≤ 4
3⌈lg 𝑛⌉ − 5 otherwise

Improved {
⌈lg(𝑛 + 1)⌉ − 1 if 𝑛 = 1
2⌈lg(𝑛 + 1)⌉ − 3 otherwise

Advanced ⌊(1 + 1
𝜎 ) ⌊lg 𝑛⌋⌋ + 𝜎 + 9

(a) Summary of theoretical worst-case path length
given list of length 𝑛.

(b) Length of list vs theoretical worst-case path length.
𝑥-axis in log scale.

Fig. 15. Comparison of theoretical worst-case path lengths for each variant of Myers list.

and thus either cases 1, 2 or 3 must apply. This gives us a total of no more than (1 +
(1/𝜎))𝑘 + 𝜎 + 9 pointers.

Case 5. Cases 1, 2, 3 and 4 do not apply, but src is a leaf node whose right-handed depth is not 0.
This means that src is the second or third cell in src. Similar to Case 4, we take up to two
pointers to reach a non-leaf node, and thus either cases 1, 2 or 3 must apply. This gives
us a total of no more than (1 + (1/𝜎))𝑘 + 𝜎 + 8 pointers.

Case 6. Cases 1, 2, 3, 4 and 5 do not apply. This means that src is the second or third cell of src
and that src is a leaf node of right-handed depth 0. Let the logical next node of src be 𝑠. 𝑠
is necessarily the right sibling of src and is thus a leaf node of nonzero RHD.
If the first cell of 𝑠 satisfies cases 1, 2 or 3, then similar to Case 4 and Case 5 we take up
to two pointers from src to reach the first cell of 𝑠, and so the overall path has no more
than (1 + (1/𝜎))𝑘 + 𝜎 + 8.
Otherwise, the first cell of 𝑠must satisfy case 4, and thus 𝑠.next satisfies cases 1, 2 or 3. If
src is the second cell of src, taking the greater pointer brings us to the last cell of 𝑠, then
the next pointer brings us to the first cell of 𝑠.next for a total of (1 + (1/𝜎))𝑘 + 𝜎 + 8
pointers. Otherwise, src is the last cell of src, and taking four pointers brings us to the
first cell of 𝑠.next, and the entire path has no more than (1 + (1/𝜎))𝑘 + 𝜎 + 10 pointers.

Therefore, the path length is no more than the maximum lengths of these cases, which is (1 +
(1/𝜎))𝑘 + 𝜎 + 10. �

Finally, Theorem 5.8 is a simple consequence of Lemma 5.9 and Lemma 5.17.

6 Empirical Evaluation
In this section, we compare the theoretical and actual path lengths for lookups in the variants
of Myers lists presented in this paper. The variants considered are basic Myers lists (Section 3),
improved Myers lists (Section 4) and advanced Myers lists (Section 5) with 𝜎 = 2, 4, 8, 16. We
evaluate lists of length up to 100,000—the time taken to perform our evaluation of significantly
larger lists (e.g., 105 < 𝑛 ≤ 106) is prohibitively long. Figure 15 summarizes the theoretical results.

To see whether our theoretical analysis is tight, and as a check on our worst case analysis, we
also directly measured the worst-case path length of traversals in each Myers list variant. The
results are plotted in Figure 16. In each plot, the 𝑥-axis is the length of the list, and the 𝑦-axis
represents path lengths. In blue, we show the actual worst-case path length for lookups starting
from the head of the list—the worst-case path length of lookups starting from an arbitrary cell is
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(a) Myers Lists (b) Improved Myers Lists

(c) Advanced Myers Lists (𝜎 = 2) (d) Advanced Myers Lists (𝜎 = 4)

(e) Advanced Myers Lists (𝜎 = 8) (f) Advanced Myers Lists (𝜎 = 16)

Fig. 16. Comparison of path lengths of Myers list variations. 𝑥-axes in log-scale. Blue: actual worst case path
length starting from the head of the list. Theoretical worst case path lengths also plotted using the color
conventions from Figure 15. Dashed lines are theoretical path lengths of other variants for comparison.
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obtained by taking the maximum of the worst case path lengths of all the shorter lists. We also
overlay the theoretical bounds plotted in Figure 15b for comparison. We measured path lengths
instead of runtime because our focus is on validating the theoretical bounds obtained, and also
because as noted in Section 5, the time taken to compute the shortest path for advanced Myers lists
is expensive, and our implementations are not optimized for it.

6.1 Discussion
6.1.1 Tightness of Theoretical Upper Bounds. The theoretical bounds for basic and improved Myers
lists are tight, closely matching their actual path lengths. This is expected, as their analyses are
straightforward and do not involve significant overheads. The theoretical bounds for advanced
Myers lists are less tight, particularly for smaller list lengths. This is due to the constant 𝜎 + 9,
which dominates the theoretical cost when the height of the tree formed by the advanced Myers
list is small compared to it. As the size of the list increases, the bound slowly tightens, and the
actual path length curves and asymptotically tends towards the theoretical bound (this curvature is
easier to see by using the improved Myers lists as a reference line).

6.1.2 Path Lengths and Tree Structure. Recall that for all variants, when the list forms a perfect
binary tree, the path length from the head of the list to any other cell is minimized, relative to lists
of similar sizes, and this is manifest in the plots as downward spikes.

The worst path lengths occur for basic and improved Myers lists when the list head is the leftmost
leaf of the tree formed by it. For advanced Myers lists, the worst path lengths occur in edge cases,
such as when starting at the last cell of a leaf whose RHD is large (relative to the height of the
tree) and greater than the RED of the target uncle. In general, edge cases incur an additional but
constant cost. But, when the list is small and there are few or no skip layers, the edge cases can
cause the traversal to exhibit double descent (Section 5.1.1) as traversing out of the edge case brings
us to the root of a large subtree, and since there are few or no descendant skip layers, we must
descend to the leaf layer to reach the target uncle. As the number of skip layers in the list increases,
the edge cases stop degenerating into double descents. For this reason, the path lengths in edge
cases are more pronounced for smaller lists, but become less so as the size of the list increases and
more skip layers are present.

6.1.3 Comparison of Variants. Among all variants, the advancedMyers list with 𝜎 = 4 demonstrates
the best actual path lengths among all lists when the list length is close to 100,000. This is because
𝜎 = 4 strikes an optimal balance between the constant overhead of descending to the next skip
layer and the 1/𝜎 overhead of descents through skip layers. For advanced Myers lists with 𝜎 = 8
and 𝜎 = 16, the actual path length is closer to that of improved Myers lists, as lists of size 100,000
have only one or no skip layers. In these cases, the overhead of descents through skip layers is
minimal, but the problem of double descent—similar to that in improved Myers lists—still persists.
Smaller advanced Myers lists with 𝜎 = 2 and 𝜎 = 4 have longer path lengths than improved Myers
lists, as the path cost savings from using skip layers are small relative to the overall traversal cost.
However, as the list size increases, the path cost savings from skip layers outweigh the overhead of
descents through skip layers, leading to better path lengths for these variants. This suggests that
the use of advanced Myers lists is advantageous (compared to improved Myers lists) only when
the lists involved are large. Remarkably, despite basic Myers lists outperforming advanced Myers
lists on small sizes in Figure 15, when we measure actual path lengths, all the Myers lists variants
outperform basic Myers lists (see Figure 16).
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7 Related Work
Random-Access Lists. Myers lists [23] support logarithmic-time random access by augmenting

each cell of a cons list with an additional pointer. Okasaki [24] later introduced a purely functional
random-access list structured as a list of perfect binary trees, preserving 𝑂(1) time and space for
cons, car and cdr while reducing the lookup complexity (starting from the first element of the list) to
2 lg(𝑛 + 1)+𝑂(1). As shown by Okasaki [24], Okasaki lists with tree nodes pointing to left children
and right siblings (instead of right children) are isomorphic to Myers lists with redundant pointers
removed. Improved Myers list (Section 4) matches the lookup performance of Okasaki lists but can
do so starting from arbitrary positions. Advanced Myers lists (Section 5) further outperform both
improved Myers lists and Okasaki lists in this regard.

Skip Lists. Another list-like data structure supporting 𝑂(lg 𝑛) random access is the skip list [27],
a probabilistic alternative to balanced binary trees. A skip list is built in layers. The bottom layer is
an ordinary cons list. Each higher layer allows some elements to skip across multiple nodes, where
an element in layer 𝑖 appears in layer 𝑖 + 1 with some fixed probability 𝑝. On average, the cost of
looking up the 𝑚th element of a skip list with 𝑛 elements is log1/𝑝 𝑛 +

1−𝑝
𝑝 log1/𝑝 𝑚+Θ(1) [25, 27],

but due to their probabilistic nature, the worst case is in linear time. Deterministic skip lists [22]
address this with an upper bound of 2 lg 𝑛 + Θ(1) for lookups. However, though a single perfectly
balanced skip list takes 𝑂(𝑛) space, it degenerates when multiple skip lists share the same tail, since
the headers of a skip list each have logarithmically many outgoing pointers. On the other hand,
since Myers list cells are of constant size with two outgoing pointers, multiple Myers lists that
share the same tail only take up space linear in the total number of cells.

Purely Functional Data Structures with Fast Lookups. Just like Myers lists, other purely functional
data structures supporting fast lookups have also been designed. The one-sided flexible array
[15] is implemented as a tree backed by a base array, with different base array implementations
offering space/time tradeoffs. Optimizing the array for lookup performance gives Θ(√lg 𝑛) lookup
complexity. However, in general, the worst case complexity for cons is linear in the number of nodes,
unlike Myers lists where cons is in 𝑂(1). VLists [4] are implemented as a linked list of memory
blocks of exponentially increasing size. On average, lookups are done in constant time for a single
VList, however, in the degenerate case where a VList is constructed by cons on tails, lookups are
done in 𝑂(𝑛) time like cons lists, while Myers lists achieve the same in 𝑂(lg 𝑛). Kaplan and Tarjan
[17] observed the algorithmic notion of recursive slowdown, introducing a persistent deque that can
perform lookups in worst-case 𝑂(lg 𝑑) time, where 𝑑 is the distance to the closest end of the deque.
These also support 𝑂(1) cons, car and cdr, but go further by also supporting 𝑂(1) concatenation.
However, unlike Myers lists, they do not support traversals from arbitrary positions nor can they
be adapted to support range queries.

Finger Search Trees. Unsurprisingly, trees are commonly used for their lookup performance—our
variants of Myers lists also leverage trees for this purpose. A prominent tree structure that supports
fast localized lookups is the finger search tree, first introduced by Guibas et al. [12] as a variant
of B-trees [6], which supports access to elements near a “finger” (a reference point in the data
structure) in 𝑂(log 𝑑) time, where 𝑑 is the distance from the finger to the target element. Alternative
implementations of finger search trees have also been developed [9, 12, 16, 18, 19, 28, 29], and other
implementations supporting finger searches from an arbitrary number of fingers have also been
proposed [7, 8, 10, 13, 14, 21]. Similar to Myers lists, a traversal in a finger search tree generally
involves a traversal to what we call an “uncle”, and the extra pointers of treaps [3] serve a similar
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purpose as uncle pointers in advanced Myers lists. Finger search trees are typically optimized only
for search and not for list operations like cons and cdr, which are typically in 𝑂(lg 𝑑).

8 Conclusion
We have explored Myers lists, a purely functional data structure that extends traditional cons
lists by adding a jump pointer to each cell, enabling efficient random access while preserving the
advantages of cons lists, such as tail sharing. Unlike cons lists, Myers lists support lookups in a
logarithmic number of pointer traversals, making them suitable for applications requiring efficient
access to elements. Notably, the structural characteristics of lookups in Myers lists make them
well-suited for range queries.

We revealed that Myers lists possess a recursive structure that is isomorphic to binary trees,
allowing us to analyze their path lengths using recurrence equations. This analysis uncovered
opportunities for optimization, leading to the development of an improved Myers list that reduces
the lookup complexity from 3⌈lg 𝑛⌉−5 to 2⌈lg(𝑛+1)⌉−3. ImprovedMyers lists match the lookup path
lengths of Okasaki lists but additionally supports lookups starting from arbitrary cells. Building on
this, we introduced an advanced variation of Myers lists that further reduces the lookup complexity
to (1 + 1/𝜎)⌊lg 𝑛⌋ + 𝜎 − 9, showing that it is possible to get arbitrarily close to the optimal bound
by trading a factor in front of lg 𝑛 for a larger constant. We achieved these improvements with the
same cell structure as basic Myers lists, the only difference being where the jump pointer of each
cell points to.
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A Artifact
This paper is accompanied by an artifact online at:

– Zenodo: https://zenodo.org/records/15628635 (doi:10.5281/zenodo.15628635), which also
contains a virtual machine for reproducing the results in this paper [26].

– GitHub: https://github.com/plilab/paper-limits-myers-lists-artifact/releases/tag/v1.0.0, tag
v1.0.0, commit 0aad997.

– Software Heritage:
https://archive.softwareheritage.org/swh:1:dir:8ce24c2b5a81f1a93a5c888e1d0ff905bef3f168,
SWHID swh:1:dir:8ce24c2b5a81f1a93a5c888e1d0ff905bef3f168.

The complete artifact is also embedded in this paper as both QR codes (in Appendix A.1) and
copyable text (in Appendix A.2). For each of these, copyable versions of the encoded artifact is also
embedded as “alternate text” of bullets placed between guillemets (e.g., filename↦ « •»). Copying
the bullet copies the file contents. The guillemets are delimiters to make selecting the text in the
bullet easier but are not part of the file contents.

The expected file sizes are:

File Size
source.tar.gz 19067 bytes
source.tar.gz.base45 28601 bytes
source.tar.gz.base64 25519 bytes
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A.1 QR-Encoded Artifact File: source.tar.gz.base45↦ « •»
The complete artifact is a binary file, which cannot be copied as alternate text, so it is Base45
encoded4 and then stored in a sequence of QR codes in case it is not copyable from the bullet. To
reconstruct the Base45 encoded artifact, merely concatenate the scans of the QR codes. Each QR
code (except the last) contains 4296 bytes. Some Base45 decoders append a spurious newline at the
end that causes an “unexpected end of file” error from gzip. That newline should be removed with
a command like head --bytes=-1.

QR Encoded Artifact:

000↦ « •» 001↦ « •»

002↦ « •» 003↦ « •»

4https://www.rfc-editor.org/rfc/rfc9285
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004↦ « •» 005↦ « •»

006↦ « •»

A.2 Base64-Encoded Artifact File: source.tar.gz.base64↦ « •»
The complete artifact is a binary file, which cannot be copied as alternate text, so it is Base64
encoded5 and then stored in small-font text in case it is not copyable from the bullet. Newlines
should be omitted from the Base64-encoded file. Be careful to not include page numbers, headers
or footers when copying.

Base64 Encoded Artifact:
H4sIAAAAAAAC/+w8aXPbSK7zNfwVeIzzQia6KMt2RllnozjKRLW+SrY3b8p2yS2xJTHhoWFTtpXrtz+gm6cOx3F2PLu1YY0jEg2g0Wg0gL5GBNNwwKu//JlPDZ+tWk3+1hZ/5bu1UatvrW9sNSR8q7618Qts/HIPz1RELMQqf/nvfITq/93OTnv/qP3n9f/m6v6vW1a92P9WbR1/oPaz///0Z69zDLvOgPuCa9pOMJmFzmgcgTEwoV6rb8BhGIxC5nmOP4Jd5o+mbM
Sh4/vBJYucwEdYH17C/smRph3y0HOEIKgjYMxD3p8BEvsRt0swDDmHYAiDMQtHvARRAMyfwYSHAgmCfsQcnyphMEApNMSMxshGBMPoioUckW1gQgQDhyE/sIPB1ON+pKQYOi4XYERjDvpRTKGbshKbM1dzfKCypAiunGgcTCMIuYhCZ0A8SuD4A3dqkwxJset4TlwDkUvVCA2ZTgW2gOQsgRfYzpB+uWzWZNp3HTEuge0Q6/40QqAgoNRxidpRDUIQ3HU15OCg3LKt
mXQSh0SfkEKjWEWCIFfjwCu2xBHacBr6WCWXNHaAKpM1vueDiCCEPgxcN7iipg0C33aoRaKpacdYxPrBJZdtUT3vBxGKqkSgDphkvRoXiTFzXejzWGFYL6qX5ZoTUvU4rPzIYS5MglDWN9/MCtb/tg1HB2+O37W6begcwWH34J+d1+3XoLeO8FsvwbvO8duDk2NAjG5r//h3OHgDrf3f4R+d/dclaP/fYbd9dAQHXa2zd7jbaSOss7+ze/K6s/8bvEK6/QM07w4aOT
I9PgCqMGbVaR8Rs712d+ctfrZedXY7x7+XtDed433i+eagCy04bHWPOzsnu60uHJ50Dw+O2lj9a2S739l/08Va2nvt/eMK1oowaP8TP+DobWt3l6rSWicofZfkg52Dw9+7nd/eHsPbg93XbQS+aqNkrVe7bVUVNmpnt9XZK8Hr1l7rt7akOkAuXY3QlHTw7m2bQFRfC//bOe4c7FMzdg72j7v4WcJWdo9T0nedo3YJWt3OESnkTfdgr6SROpHiQDJBuv224kKqhkKP
IAp9nxy1U4bwut3aRV5HRExNTJAr2i8/n//c+L/HPnByon9B/LfqVn1rPv5vNeo/4/99POi3m+DNMMSUMW5FmvaQfGa7iV7c5iF4LIqwTEbzEsyCKXioMGCXgWNjVAnRkdsYRYdY7A+40I66O7ANZxqACAfVaeS4Fc9Nv2U9C4CeHwSTRSiJswidMCdchGJUW8J33R35i9D6Uqg1B+1je8YeCz9g0CxgY5qC35qW6awJawa229QeBAPmuUMHQ6d8CyYRlA/WoXwFT1
vI4cGDcoeYqNcgp3YFcR3/w+TDCMrROOTMVsAJG3ygnGsQhLwnpSrCJ5PrnssVh7WnmjZwOfOb2oPQg/Iw37MxhBrxpDLwnPTtOn4LNE2LMCESeYMA7YH3wXZCKE8oW5q6mAA9eMkH4wD07tSXKVuqK1GpVPS0+B3DRAOL0UwoPYBJGKCJCC4zmUHgTVBsXoFjyjKuHESI0AmBRaXrgPlXKJBXpZqThXIqhnYG8qvsIAugToayVLXL/VE0hlrZko4FXiQSV6UlRNcR
/C/p6Zs867fhWf8+npbkKT44E6h/kzchS9xy/W5VNL6jisbdqnj2HVU8u1sV1uZ31GFtZpVcoek9Tw2xJdPVxEZzptdVTEBOCUIHXZ1PuWzCW8fRhLMVHBApK4yTMouWYGXt6fBQwKr2YDLD6YO/Dt6H3kBcViYzaaTL4PUV8Fz/31zcuLn42c3F1mahfOIG2Khl4qYl9ZUlq0RegtD4FsKzbyHkBcc5RRDOsFx6uKTv0LGJy4IFqO75du/H3ZhzZMeBnB/J2UvMJZ
5XjQM0W48Nxo6P4TGc+guzLc+jmdQwjOdteYJmVoMYTKB8CBv4oDiRM2SD6KWLQcQlgmYs0pn+pCIuR2c6VPQfdfQPb/lgPvAqHTqaHEVNOdkrDmRZUPbQgZcjmuiXx1zOJq1a5pDk6KZA8DRyPL6agfIF8ZC3ejje6W+Oj0eK/Fcwku5GMoLyH9MgYlCvwUMF9jm30T7ApSWLEFQxTcOD8MN3qfB17OeElng8lHCyTJFpeUF4dHz1Z4WAx8KQzT7j5NyFss/hMRrs
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