
Type-Safe Auto-Completion of Incomplete Polymorphic Programs

Incomplete programs are ubiquitous in web repositories, evolving software projects and beyond, but are difficult to work with due to
references to undeclared constructs. Program auto-completion enables static analysis on incomplete programs and boosts developer
productivity. However, earlier efforts cannot handle parametrically polymorphic types (which are frequently used) and do not make
guarantees on type safety.
We present a new algorithm that receives an incomplete polymorphic Java program P and reconstructs its surrounding
dependencies R in a type-safe manner such that P and R together form a complete and well-typed program. Our algorithm extends
constraint generation and constraint solving used by many type-checking and type inference algorithms.

Description # Programs Avg. Time
Complete 4895 (99.7%) 1.7s
Cannot

complete
8 (0.2%) 1.3s

Timeout 9 (0.2%) -

Yong Qi Foo
yongqi@nus.edu.sg

National University of Singapore

Siau-Cheng Khoo
khoosc@nus.edu.sg

National University of Singapore

2 CONSTRAINT GENERATION

1 OVERVIEW

• Constraints are generated by analysis of the Abstract Syntax Tree (AST) of the
incomplete program: a = b in P1 produces constraint B<D> <: A<? extends C>

• Type of a.x is unknown because class declaration for A is missing: we create a new
declaration class A<V>, and since x occurs in A<V>, x must be V or some other class type
that can only contain type parameter V

• We encode this as 𝜏1 = ⋁{V, 𝛼1{V}} where 𝛼1 is some unknown class type

• Assigning 𝜏1 as type of x lets us soundly generate type constraints on type of a.x:
o a.x = it gives Iterable<String> <: 𝜏1{V ↦? extends C}
o a.x = "Hello APLAS!" gives String <: 𝜏1{V ↦? extends C}

class B<T> extends A<T> {
 Iterable<String> it;
 void main() {
 A<? extends C> a = new A<>();
 B<D> b = new B<>();
 a = b;
 a.x = it;
 a.x = "Hello APLAS!";
 }
}

Incomplete program P1

class A<V> {
 Object x;
}
class C { }
class D extends C { }

Program R1 completes P1

3 CONSTRAINT SOLVING

• Constraint solving is usually done by constraint reduction: if B implies A then A reduces to constraint
B. For example, since B<T> extends A<T>, because D <: C implies A<D> <: A<? extends C> which implies
B<D> <: A<? extends C>, we reduce B<D> <: A<? extends C> into D <: C

• If a constraint cannot be reduced due to missing class declarations, we add more information to the
program so that it can be reduced. D <: C cannot be reduced further since D is missing, so we make D
extend C, which makes the constraint reduce to True and therefore solved

• Types like 𝜏1 can be resolved by replacing it with any one of its choices and seeing if the constraints
hold, for example we know 𝜏1 cannot be V since the constraint String <: ? extends C does not hold,
therefore 𝜏1 must be 𝛼1.

• 𝛼1 can be any possible class type that may be parametrically polymorphic but we do not know what
its arity or type arguments are, so we analyse the erasure graph to eliminate some possible selections
of 𝛼1; the erasure graph is an abstraction of the program’s type hierarchy that does rely on knowledge
of type arguments

• Since there must be a path from String to 𝛼1 and Iterable to 𝛼1, 𝛼1 must be Object. Replacing 𝛼1
with Object solves last two constraints, and we have arrived at R1, such that P1 and R1 together forms
a complete and well-typed program

4 EXPERIMENTAL EVALUATION

Object

Comparable

String

Iterable

𝛼1

• Implementation of the algorithm tested on 4912 incomplete programs, 436 of them
included parametrically polymorphic types

• Each program has ~30 unknown types; time limit was 1 minute
• Programs that could not be completed were actually impossible to complete,

therefore no false positives
• Algorithm suffers from path explosion due to significant branching in search space

5 CONCLUSION

We created a new algorithm that completes incomplete polymorphic Java programs that extends traditional constraint
generation and constraint solving and type checking and type inference. We postulate that the ideas we presented allow
future work to extend (likely nontrivially) ours to complete incomplete polymorphic programs in other languages like C++
and beyond.

Erasure subgraph of P1

Prototype is hosted on https://github.com/yonggqiii/javacip

