
Functors and Monads
Connections between Programming and Category Theory
Foo Yong Qi
18 December 2023

ABSTRACT. In this article, I show that the definitions of functors, monads etc. in the programming sense

do not only correspond loosely with the categorical definitions, but are precisely identical if we are in the

relevant category. Among other topics, this article shows that the phrase ‘a monad is a monoid in the category

of endofunctors’ is a precise category-theoretic definition of what a monad is, and shows that a monad in the

programming sense that satisfies the monad laws (in the programming sense) implies that what we have is

also, precisely, a category-theoretic monad.

Keywords: category theory, functional programming

1 MOTIVATION

If you have done some functional programming before, you would have probably come across and

used functors, monads, polymorphic functions, and maybe even monoids. You may also likely have

heard that these terms are defined in category theory. However, without any knowledge of category

theory, sayings like ‘a monad is just a monoid in the category of endofunctors, what’s the problem?’

can be incredibly frustrating, and the connections between functors and monads in the programming

sense and those in category theory are not immediately apparent.

Through this article I hope to give readers enough background in category theory to understand

that functors, monads etc. in the usual programming sense do not only correspond loosely to those

found in category theory, but are indeed exactly the same, i.e. a functor in the programming sense is

exactly a functor in some category. However, I shall not cover functional programming fundamentals;

these are presumed to be understood and known by the reader (readers who have not acquired

sufficient background can do so with the wide variety of resources online). Instead, this article draws

equalities between the functional programming constructs we know of, and their category-theoretic

definitions. In addition, due to this presumption, the majority of this article starts with the math

before showing the correspondence with code.

In this article, I offer to show:

1. The definition of a category, showing that we can assemble types in a programming language

into one (Section 2);

2. Functors in the usual programming sense are exactly categorical functors on our category of

types (Section 3);

3. Product and function types in the usual programming sense are precisely product and expo-

nential objects in our category of types (Section 4);

4. Monoids in the usual programming sense are precisely monoids in our category of types

induced by the categorical product and the unit type (Section 6);

5. Monads in the usual programming sense are precisely monads on our category of types, which

are monoids in the category of endofunctors of our category of types, which is a strict monoidal

category induced by functor composition and the identity functor (Section 7);

Addresses: FOO YONG QI, Email: yongqi@nus.edu.sg, Website: https://yongqi.foo/, National University of
Singapore.

https://yongqi.foo/

Functors and Monads—Connections between Programming and Category Theory

6. Monads in the usual programming sense that obey the monad laws in the usual programming

sense, precisely define monads in the categorical sense (Subsection 7.2).

While I have worked out many of the results myself, none of the definitions, results and observa-

tions are my original contribution; at the very least, I am certainly not the first to show them.

2 CATEGORIES

To even begin our discussion we must first describe what category theory is. Intuitively, most

theories (especially the algebraic ones) study mathematical structures that abstract over things;

groups are abstractions of symmetries, and geometric spaces are abstractions of space. Category

theory takes things one step further and study abstraction itself.

Effectively the goal of category theory is to observe similar underlying structures between

collections of mathematical structures. What is nice about this is that a result from category theory

generalizes to all other theories that fit the structure of a category. As such it should be no surprise

that computation can be studied in category theory too!

On the other hand, the generality of category theory also makes it incredibly abstract and difficult

to understand—this is indeed the case in our very first definition. As such, I will, as much as possible,

show you ‘concrete’ examples of each definition and reason about them if I can. With this in mind,

let us start with the definition of a category, as seen in many sources.

Definition 2.1 (Category). A category C consists of

• a collection of objects, 𝑋,𝑌, 𝑍, . . . , denoted ob(C)

• a collection of morphisms, 𝑓 , 𝑔, ℎ, . . . , denoted mor(C)

so that:

• Each morphism has specified domain and codomain objects; when we write 𝑓 : 𝑋 → 𝑌 ,

we mean that the morphism 𝑓 has domain 𝑋 and codomain 𝑌 .

• Each object has an identity morphism 1𝑋 : 𝑋 → 𝑋 .

• For any pair of morphisms 𝑓 , 𝑔 with the codomain of 𝑓 equal to the domain of 𝑔 (i.e. 𝑓

and 𝑔 are composable), there exists a composite morphism 𝑔 ◦ 𝑓 whose domain is equal to

the domain of 𝑓 and whose codomain is equal to the codomain of 𝑔, i.e.

𝑓 : 𝑋 → 𝑌, 𝑔 : 𝑌 → 𝑍 ⇝ 𝑔 ◦ 𝑓 : 𝑋 → 𝑍

Composition of morphisms is subject to the two following axioms:

• Unity. For any 𝑓 : 𝑋 → 𝑌 , 𝑓 ◦ 1𝑋 = 1𝑌 ◦ 𝑓 = 𝑓 .

• Associativity. For any composable 𝑓 , 𝑔 and ℎ, (ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓).

As you can see, there is very little describing what a category is, or how to construct one. In

category theory, we do not care (that much) about the construction of objects of morphisms; as long

as they satisfy the definition of a category, we may work with them in a categorical framework. This

allows many different kinds of objects to all assemble into categories.

2

Foo Yong Qi

Example 2.1. The category of sets, Set, contains sets (like N and {1, 2, 3}) as objects, and as

morphisms, functions between sets (like 𝑓 : R → R, 𝑓 (𝑥) = 𝑥2 + 2𝑥 + 3). From this example,

we can see that there can be more than one morphism between two objects in a category. The

identity morphism for each object A is the function 1A : A→ A where 1A(𝑥) = 𝑥 .

Our construction of Set indeed forms a category.

Theorem 2.1. Set is a category.

Proof. Given objects (sets) A, B and C and morphisms (functions) 𝑓 : A→ B and 𝑔 : B→ 𝐶 ,

the composite 𝑔 ◦ 𝑓 : A → C exists in Set, given by (𝑔 ◦ 𝑓) (𝑥) = 𝑔(𝑓 (𝑥)). Similarly, we can

see that (1B ◦ 𝑓) (𝑥) = 1B(𝑓 (𝑥)) = 𝑓 (𝑥) and (𝑓 ◦ 1A) (𝑥) = 𝑓 (1A(𝑥)) = 𝑓 (𝑥), therefore showing
that composition is unital. Finally, composition of functions is also associative; suppose we

have another morphism ℎ : C → D, then ((ℎ ◦ 𝑔) ◦ 𝑓) (𝑥) = (ℎ ◦ 𝑔) (𝑓 (𝑥)) = ℎ(𝑔(𝑓 (𝑥)), and
(ℎ ◦ (𝑔 ◦ 𝑓)) (𝑥) = ℎ((𝑔 ◦ 𝑓) (𝑥)) = ℎ(𝑔(𝑓 (𝑥)) too.

□
As stated earlier, many kinds of objects assemble into categories. Example 2.2 gives an example

category that has (virtually) nothing to do with Set. This category we shall show will be used

everywhere in this article.

Example 2.2. Suppose some simple types in a type system exist. We can construct a category T
where the objects are types, and the morphisms are functions on those types, i.e. a function

from A to B will be a morphism from A to B in this category—these are functions of the type

A -> B. In this category, composition of morphisms is straightforward: if f :: A -> B and

g :: B -> C then its composition is (g . f) x = g (f x). Similarly, for any type A the

identity morphism is the identity function id :: A -> A where id x = x. We can show that

what we have constructed is indeed a category, by similar proofs of associativity and unity

shown in the proof of Theorem 2.1.

Composition in categories can be described by the following commutative diagram1
, that is, the

following diagram commutes
2
:

𝐴 𝐵

𝐶

𝑓

𝑔◦𝑓
𝑔

In other words, going from object 𝐴 to 𝐵 via morphism 𝑓 then from 𝐵 to𝐶 via 𝑔 is the same as going

from 𝐴 to𝐶 directly via 𝑔 ◦ 𝑓 . Such commutative diagrams will be useful for describing and defining

further concepts later.

3 FUNCTORS

In mathematics, the relationships between objects are frequently far more interesting than the

objects themselves. Of course, we do not just focus on any relationship between objects, but of keen

1
The fact that diagrams are formally defined in category theory blows my mind. Even still, diagrams also assemble

into categories!

2
The identity morphisms are not shown, but they are there!

3

Functors and Monads—Connections between Programming and Category Theory

interest, the structure preserving relationships between them, such as group homomorphisms that

preserve group structures, or monotonic functions between preordered sets that preserve ordering.

In category theory, functors are maps between categories that preserve the structure of the domain

category, especially the compositions and identities.

Definition 3.1 (Functor). Let C and D be categories. A (covariant) functor 𝐹 : C → D consists

of:

• An object 𝐹 (𝐶) ∈ ob(D) for each object 𝐶 ∈ ob(C)a.

• A morphism 𝐹 (𝑓) : 𝐹 (𝐶) → 𝐹 (𝐷) ∈ mor(D) for each morphism 𝑓 : 𝐶 → 𝐷 ∈ mor(C).

subject to the two functoriality axioms:

• For any composable pair of morphisms 𝑓 , 𝑔 ∈ mor(C), 𝐹 (𝑔) ◦ 𝐹 (𝑓) = 𝐹 (𝑔 ◦ 𝑓).

• For each 𝐶 ∈ ob(C), 𝐹 (1𝐶) = 1𝐹 (𝐶) .

in other words, functors respect composition and identities.

a
We abuse the notation of set membership here. It is not necessary for the collections of objects and morphisms

of a category to be sets, as is the case for ob(Set).

We show two diagrams below, where on the left we have a diagram in C and on the right we

have a diagram in D. Given a functor 𝐹 : C → D, the following diagrams commute:

𝐴 𝐵 𝐹 (𝐴) 𝐹 (𝐵)

𝐶 𝐹 (𝐶)

𝑓

𝑔◦𝑓
𝑔

𝐹 (𝑓)

𝐹 (𝑔◦𝑓)
𝐹 (𝑔)

Example 3.1. The powerset functor 𝑃 : Set → Set maps a set A to its powerset 𝑃 (A) = P(A)
and a function 𝑓 : A→ B to 𝑃 (𝑓) : 𝑃 (A) → 𝑃 (B) defined by

𝑃 (𝑓) (X) = {𝑓 (𝑥) | 𝑥 ∈ X}

In other words, 𝑃 lifts a function of elements of A into a function of subsets of A.

Theorem 3.1. 𝑃 is a functor.

Proof. 𝑃 respects composition. Suppose we have 𝑓 : A→ B and 𝑔 : B→ C, then 𝑃 (𝑔 ◦ 𝑓) (X) =
{(𝑔 ◦ 𝑓) (𝑥) | 𝑥 ∈ X} = {𝑔(𝑓 (𝑥)) | 𝑥 ∈ X} and (𝑃 (𝑔) ◦ 𝑃 (𝑓)) (X) = 𝑃 (𝑔) ({𝑓 (𝑥) | 𝑥 ∈ X}) =

{𝑔(𝑓 (𝑥)) | 𝑥 ∈ X}. 𝑃 also respects identities. Given 1X : X → X where 1X(𝑥) = 𝑥 , then

𝑃 (1X) (X) = {1X(𝑥) | 𝑥 ∈ X} = {𝑥 | 𝑥 ∈ X} = X, thus showing that 𝑃 (1X) = 1𝑃 (X) .

□
The powerset functor is one example of an endofunctor, which is a functor that has equal domain

and codomain categories.

Example 3.2. In many languages, the list type is a type constructor that receives a type and

produces a list of that type. For example, the [Int] type is produced from passing in the Int
type into the [] type constructor. We shall denote the list type constructor as [_], sort of as a

4

Foo Yong Qi

function on types, for example, [_](Int) = [Int].
Furthermore, we can define a higher order function lmap that lifts a function on elements to

one on a list of those elements, like so:

lmap :: (a -> b) -> [a] -> [b]
lmap f [] = []
lmap f (x : xs) = f x : lmap f xs

As an example, lmap length ["abc", "de"] gives [3, 2].
Then, let T be the category of types described in Example 2.2. We can define an endofunctor

𝐿 : T → T that maps:

• each object (type) A ∈ ob(T) to the type 𝐿(A) = [_] (A) = [A]

• each morphism (function) f :: A -> B ∈ mor(T) to the function 𝐿(f) =
lmap f :: [A] -> [B].

The functoriality of 𝐿 should be straightforward to verify.

In many programming texts, a type constructor (together with its implementation of lmap) is a
functor if we have:

lmap (g . f) ==== lmap g . lmap f
lmap id ==== id

It should be immediately clear that our definition of lmap satisfies them. Also, you should notice

that the functor laws described in the usual programming sense is precisely what is needed to define

a categorical functor in T . As such, we can define any arbitrary functor (in the programming sense)

that maps types via a type constructor and lifts function on types into functions on the types after

applying the type constructor. As long as this functor satisfies the functor laws, this specifies a

functor on T ! This is precisely the motivation for the Functor typeclass in Haskell:

class Functor (f :: * -> *) where
fmap :: (a -> b) -> f a -> f b
-- ...

Here, the type constructor f is a Functor when it is equipped with a way to lift functions via fmap
(subject to the functoriality axioms). Since the list type constructor is already a Functor, it provides
a definition of fmap that is identical to lmap which we defined earlier. We can even define our own

type constructors and allow them to be Functors by providing their definitions of fmap as long as
they respect composition and identities. I show an example of defining our own functor below:

1 -- Our own type constructor
2 data Box a = Box a deriving Show
3

4 -- fmap definition
5 instance Functor Box where
6 fmap f (Box x) = Box $ f x
7

8 main :: IO ()
9 main = do
10 print $ fmap (+ 1) (Box 3) -- Box 4

5

Functors and Monads—Connections between Programming and Category Theory

The definition of a category does not necessarily preclude any particular object from being a part

of a category; as such, it stands to reason that categories themselves can assemble into a category
3
.

In such a category, the objects are categories themselves, and the morphisms between categories

are functors between them. The identities for each category C, denoted 1C , are their corresponding
identity functor (mapping each object and morphism to themselves) and composition of morphisms

is defined by the composition of functors. The composition of functors 𝐹 : C → D and 𝐺 : D → E
is 𝐺 ◦ 𝐹 : C → E such that for each object 𝑋 in C we have 𝐺 (𝐹 (𝑋)) in E, and for each morphism

𝑓 in C we have 𝐺 (𝐹 (𝑓)) in E. Associativity and unity of functor composition should be relatively

straightforward to show.

4 UNIVERSAL PROPERTIES

In many instances we want to characterize an object with some unique property in relation to other

objects in a category via morphisms, without needing to deal with the details of some particular

construction. This allows us to discover results of these objects without needing to repeat the same

proofs in different categories. This is what is known as a universal property.

Before defining universal properties, we shall look at some examples of them first. Suppose we

are in Set and we have sets A and B. We would like to find some set P and functions 𝜋1 : P→ A
and 𝜋2 : P→ B such that, for all sets X and functions 𝑓XA : X→ A and 𝑓XB : X→ B, there exists a
function 𝑝 : X→ P so that 𝜋1 ◦ 𝑝 = 𝑓XA and 𝜋2 ◦ 𝑝 = 𝑓XB. In simple terms, we are looking for P, 𝜋1
and 𝜋2 that allows P to be a ‘common pit stop’, or in other words, there will exist 𝑝 that encodes the

data of both 𝑓XA and 𝑓XB. As a commutative diagram, given objects A and B, we want to find object

P and morphisms 𝜋1 and 𝜋2 such that for all objects X and morphisms 𝑓XA and 𝑓XB, there exists 𝑝 so

that the following diagram commutes:

X

A P B

𝑓XB𝑓XA
𝑝

𝜋1 𝜋2

It turns out that the cartesian product of A and B, i.e. A × B, is a construction of P:

A × B = {(𝑎, 𝑏) | 𝑎 ∈ A, 𝑏 ∈ B}

and the following functions are constructions of 𝜋1 and 𝜋2: 𝜋1(𝑎, 𝑏) = 𝑎 and 𝜋2(𝑎, 𝑏) = 𝑏. This is
so that given functions 𝑓XA : X → A and 𝑓XB : X → B, 𝑝 : X → P would be the function 𝑝 (𝑥) =
(𝑓XA(𝑥), 𝑓XB(𝑥)). The diagram above commutes as (𝜋1 ◦ 𝑝) (𝑥) = 𝜋1(𝑓XA(𝑥), 𝑓XB(𝑥)) = 𝑓XA(𝑥), and
(𝜋2 ◦ 𝑝) (𝑥) = 𝜋2(𝑓XA(𝑥), 𝑓XB(𝑥)) = 𝑓XB(𝑥).

In fact, notice that given our construction of P, 𝜋1 and 𝜋2, 𝑝 is unique. Suppose 𝑝 is not unique,

and there is another morphism 𝑝′ : X→ P such that 𝜋1 ◦ 𝑝′ = 𝑓XA and 𝜋2 ◦ 𝑝′ = 𝑓XB where 𝑝 ≠ 𝑝′.
This means that 𝑝′(𝑥) = (𝑦, 𝑧) where either𝑦 ≠ 𝑓XA(𝑥) or 𝑧 ≠ 𝑓XB(𝑥). We also know that 𝜋1(𝑦, 𝑧) = 𝑦
and 𝜋2(𝑦, 𝑧) = 𝑧. As such, either (𝜋1 ◦ 𝑝′) (𝑥) = 𝑦 ≠ 𝑓XA(𝑥) or (𝜋1 ◦ 𝑝′) (𝑥) = 𝑧 ≠ 𝑓XB(𝑥) so either

𝜋1 ◦ 𝑝′ ≠ 𝑓XA or 𝜋2 ◦ 𝑝′ ≠ 𝑓XB, which is a contradiction.

We can now re-draw our commutative diagram, where dashed arrows represent a unique mor-

phism:

3
By Russell’s paradox we cannot have a category of all categories—this is the quasicategory CAT. However, there does

exist the category Cat, the category of all small categories, which are categories where the collection of its morphisms

forms a set. Cat is not an object of itself, because it is not small.

6

Foo Yong Qi

X

A A × B B

𝑓XB𝑓XA 𝑝

𝜋1 𝜋2

This property we have described completely characterizes the categorical product of two objects

in Set. We can in fact generalize the notion of a product of two objects in any arbitrary category.

Definition 4.1 (Product). Fix category C. Given objects 𝐴 and 𝐵, the product of 𝐴 and 𝐵,

denoted 𝐴 × 𝐵, equipped with morphisms 𝜋1 : 𝐴 × 𝐵 → 𝐴 and 𝜋2 : 𝐴 × 𝐵 → 𝐵, is such that

for all objects 𝑋 and morphisms 𝑓 : 𝑋 → 𝐴 and 𝑔 : 𝑋 → 𝐵, there exists a unique morphism

𝑝 : 𝑋 → 𝐴 × 𝐵 (denoted ⟨𝑓 , 𝑔⟩) following diagram commutes:

𝑋

𝐴 𝐴 × 𝐵 𝐵

𝑔𝑓
𝑝

𝜋1 𝜋2

The universality of 𝐴 × 𝐵 stems from the fact that there exists exactly one 𝑝 , i.e. 𝑝 exists and is

unique, thus denoted ⟨𝑓 , 𝑔⟩. This effectively gives rise to some notion of uniqueness of the product

of 𝐴 and 𝐵 in any arbitrary category.

Definition 4.2 (Isomorphism). Fix category C. Given objects 𝐴 and 𝐵, 𝑓 : 𝐴 → 𝐵 is an

isomorphism is there exists 𝑔 : 𝐵 → 𝐴 such that 𝑔 ◦ 𝑓 = 1𝐴 and 𝑓 ◦ 𝑔 = 1𝐵 . If there exists an

isomorphism between 𝐴 and 𝐵, we say that 𝐴 and 𝐵 are isomorphic, i.e 𝐴 � 𝐵.

Isomorphisms are important in mathematics because they group objects together that have

essentially the same properties despite their different representations. That means that what we

discover about one object will also be true of the other. For example, if two groups 𝐺 and 𝐺′
are

isomorphic, then showing 𝐺 is abelian tells us immediately that 𝐺′
is also abelian; showing 𝐺′

is

cyclic tells us immediately that 𝐺 is also cyclic. Two objects being isomorphic means that the two

objects are essentially the same.

Theorem 4.1. Fix category C. Given objects 𝐴 and 𝐵, if both 𝑃 and 𝑃 ′ are products of 𝐴 and 𝐵,
then 𝑃 � 𝑃 ′.

Proof. By Definition 4.1, because 𝑃 is a product, there exists a unique morphism 𝑓 such that

the following diagram commutes:

𝑃

𝐴 𝑃 𝐵

𝜋2𝜋1
𝑓1𝑃

𝜋1 𝜋2

We already know by definition of the identity morphism on 𝑃 that 𝜋1 = 𝜋1 ◦ 1𝑃 and 𝜋2 = 𝜋2 ◦ 1𝑃 .
Since 𝑓 is unique, it must be the case that 𝑓 is precisely 1𝑃 . This shows that any morphism from

𝑃 to 𝑃 that satisfies this commutative diagram must be equal to 1𝑃 .

Similarly, since 𝑃 ′ is also a product, the following diagram commutes:

7

Functors and Monads—Connections between Programming and Category Theory

𝑃 ′

𝐴 𝑃 ′ 𝐵

𝜋 ′
2

𝜋 ′
1 𝑓 ′1𝑃 ′

𝜋 ′
1

𝜋 ′
2

We can argue similarly to show any morphism from 𝑃 ′ to 𝑃 ′ that satisfies the commutative

diagram above must be equal to 1𝑃 ′ .

Now, again by Definition 4.1, the following diagram commutes:

𝑃

𝐴 𝐵

𝑃 ′

𝜋1 𝜋2

𝑝′

𝜋 ′
2

𝜋 ′
1

𝑝

Collapsing the diagram, once going from 𝑃 to 𝑃 ′ then back, and the other going from 𝑃 ′ to 𝑃
and back, gives us two commutative diagrams:

𝑃 𝑃 ′

𝐴 𝑃 𝐵 𝐴 𝑃 ′ 𝐵

𝜋1 𝜋2
𝑝◦𝑝′

𝜋 ′
1

𝜋 ′
2𝑝′◦𝑝

𝜋1 𝜋2 𝜋 ′
1

𝜋 ′
2

Combining these diagrams with the first two diagrams above shows us that 𝑝 ◦ 𝑝′ = 1𝑃 and

𝑝′ ◦ 𝑝 = 1𝑃 ′ , which implies that 𝑝 and 𝑝′ are isomorphisms, and therefore 𝑃 � 𝑃 ′. In fact, 𝑃 and

𝑃 ′ are isomorphic with a unique isomorphism 𝑝 and 𝑝′.

□
This gives further insight as to the universality of the categorical product of two objects: that if

two objects 𝑃 and 𝑃 ′ have the universal property of being a product of two other objects 𝐴 and 𝐵,

then there is a unique isomorphism between 𝑃 and 𝑃 ′—i.e. the product of 𝐴 and 𝐵 is unique up to

a unique isomorphism. As such, when speaking of a product of 𝐴 and 𝐵, we can describe it as the
product of 𝐴 and 𝐵, which we shall denote as 𝐴 × 𝐵.

Example 4.1. Suppose we are in the category of types T and we have types A and B. Then,
the type (A, B), together with projections fst' :: (A, B) -> A and snd' :: (A, B) -> B
where fst' (a, b) = a and snd' (a, b) = b, is the product of types A and B. That means

that given a type X and two functions f :: X -> A and g :: X -> B, we can construct a

unique function p :: X -> (A, B) given by p x = (f x, g x) so that fst' . p == f and

snd' . p == g:

1 fst' :: (Int, Char) -> Int
2 fst' (a, b) = a
3 snd' :: (Int, Char) -> Char
4 snd' (a, b) = b
5

6 f :: String -> Int

8

Foo Yong Qi

7 f = length
8 g :: String -> Char
9 g = head
10

11 p :: String -> (Int, Char)
12 p x = (f x, g x)
13

14 main = do
15 let x = "hello"
16 print $ f x -- 5
17 print $ (fst' . p) x -- 5
18 print $ g x -- 'h'
19 print $ (snd' . p) x -- 'h'

Before we look at another universal property, we shall provide a definition of the product of

morphisms, which is similar to what we have seen earlier.

Definition 4.3 (Product Morphism). Suppose we are in a category C with pairs of objects 𝐴,𝐴′

and 𝐵, 𝐵′ admitting binary products:

𝐴 𝐴 ×𝐴′ 𝐴′

𝐵 𝐵 × 𝐵′ 𝐵′

𝑝1 𝑝2

𝑞1 𝑞2

and further suppose we have morphisms 𝑓 : 𝐴 → 𝐵 and 𝑓 ′ : 𝐴′ → 𝐵′. Then, the product

morphism of 𝑓 and 𝑓 ′, denoted 𝑓 × 𝑓 ′, is the unique morphism that makes the following diagram

commute:

𝐴 𝐴 ×𝐴′ 𝐴′

𝐵 𝐵 × 𝐵′ 𝐵′

𝑓

𝑝1 𝑝2

𝑓 ×𝑓 ′ 𝑓 ′

𝑞1 𝑞2

We can see from this diagram that the product of morphisms relates closely to the unique

morphism obtained from the definition of the product of objects, i.e. 𝑓 × 𝑓 ′ = ⟨𝑓 ◦ 𝑝1, 𝑓 ′ ◦ 𝑝2⟩.

Example 4.2. Forming product morphisms in T is very similar to obtaining the product of two

objects of a type. Let us suppose we have f :: a -> b and g :: a' -> b'. Then we can form

the product of these two functions; this must be a function from (a, a') to (b, b'). It can be

defined in the most obvious way:

1 prod' :: (a -> b) -> (a' -> b') -> (a, a') -> (b -> b')
2 prod' f g (a, a') = (f a, g a')

From this definition, we can now define the following universal property.

Definition 4.4 (Exponential Object). Suppose we are in category C with objects 𝐵 and 𝐶 , and

C contains all binary products with 𝐵 (i.e., for all objects 𝑋 in C, the product 𝑋 × 𝐵 exists).

9

Functors and Monads—Connections between Programming and Category Theory

Then, the exponential object, denoted𝐶𝐵 , equipped with morphism 𝜖 : 𝐶𝐵 × 𝐵 → 𝐵, is an object

such that for any object 𝐴 and morphism 𝑓 : 𝐴 × 𝐵 → 𝐶 , there exists a unique morphism

𝜆𝑓 : 𝐴 → 𝐶𝐵 (called the transpose of 𝑓) that makes the following diagram commute:

𝐶𝐵 𝐶𝐵 × 𝐵 𝐶

𝐴 𝐴 × 𝐵

𝜖

𝜆𝑓 𝜆𝑓 ×1𝐵
𝑓

We show the product morphism of 𝜆𝑓 with 1𝐵 in the commutative diagram below for clarity:

𝐶𝐵 𝐶𝐵 × 𝐵 𝐵

𝐴 𝐴 × 𝐵 𝐵

𝑝1 𝑝2

𝜆𝑓 𝜆𝑓 ×1𝐵

𝑞1 𝑞2

1𝐵

The uniqueness of 𝜆𝑓 and 1𝐵 , and the uniqueness of product morphisms imply that 𝜆𝑓 × 1𝐵 is also

unique.

Example 4.3. Suppose we are in Set and we have sets B and C. The set of all functions from B
to C given by

CB = {𝑓 | 𝑓 : B→ C}
together with the function 𝜖 : CB → C given by

𝜖 (𝑓 , 𝑏) = 𝑓 (𝑏)

is the exponential object CB.
Suppose we have a function 𝑔 : 𝐴 × 𝐵 → 𝐶 . Then, the transpose of 𝑔 can be given by

𝜆𝑔(𝑎) (𝑏) = 𝑔(𝑎, 𝑏). This construction uniquely (up to a unique isomorphism) characterizes the

exponential set of B and C.

Example 4.4. Similar to our earlier example, suppose we are in the category of types T
and we have types B and C. Then, the function type B -> C together with a function

eval' :: (B -> C, B) -> C (recall that (A, B) is the product of types A and B) given
by eval' (f, b) = f b is the exponential object CB. That means that given a func-

tion of g :: (A, B) -> C, we can define a new function gT :: A -> B -> C given by

gT a = \b -> g (a, b) so that g (a, b) == (eval' . (prod' gT id)) (a, b). You

should notice that gT is the curried equivalent of g.

1 -- Char -> String is the exponential String^Char
2 eval' :: (Char -> String, Char) -> String
3 eval' (f, s) = f s
4

5 -- g repeats a character some number of times
6 g :: (Int, Char) -> String
7 g (0, c) = []
8 g (i, c) = c : g (i - 1, c)
9

10 -- id is the identity function (for all types)

10

Foo Yong Qi

11 -- id x = x
12

13 -- gT is the transpose of g
14 gT :: Int -> Char -> String
15 gT i c = g (i, c)
16

17 main = do
18 let a = 5
19 let b = 'a'
20 print $ g (a, b) -- "aaaaa"
21 print $ gT a b -- "aaaaa"
22 print $ (eval' . (prod' gT id)) (a, b) -- "aaaaa"

We have seen some examples of universal properties which show that these properties are not

unique to a particular category, but instead can be described in any arbitrary category. The formal

definition of a universal property is not exactly necessary for understanding later sections, but is

good to know. We define universal properties and connect them to products and exponentials in

Appendix A. Perhaps the most pertinent to our discussion is the fact that universal properties like

products and exponentials can be described on any particular category, including categories with

categories as objects.

5 NATURAL TRANSFORMATIONS

In categories, sometimes morphisms do not depend in an essential way on the particular objects

they relate. For example, our definition of the projection function on products fst' and snd'
operate on the pair (Int, Char), but these functions can operate on a pair of any two types a
and b and be defined identically. These are the polymorphic functions fst :: (a, b) -> a and
snd :: (a, b) -> bwhich can be described as a family or collection of morphisms, one of each for

every product type (A, B). Such a family is known as a natural transformation, which we will define

in this section, and we shall also give some intuition of why we can describe natural transformations

as being morphisms between functors.

Suppose in Set we have objects A, B and their product A×B. The swap function swapA,B(𝑎, 𝑏) =
(𝑏, 𝑎) maps A × B to B × A. Notice that for any objects C and D there is also its own swap function

swapC,D : C × D→ D × C defined as the more generic swap(𝑐, 𝑑) = (𝑑, 𝑐). The swap function does

not depend on the particular objects it swaps, since it is defined in the same way for any pair of

objects. Such a definition allows swap to preserve composition. For any functions 𝑓 : A→ C and

𝑔 : B→ D, the following diagram commutes:

A × B B × A

C × D D × C

swapA,B

𝑓 ×𝑔 𝑔×𝑓

swapC,D

As we can see, swapping does not depend on the objects it acts on. As such, we can define swap as

an entire collection of functions, one for each product. Since this collection preserves composition

of morphisms, we can now begin to build some intuition on such collections as morphisms between

functors.

11

Functors and Monads—Connections between Programming and Category Theory

Definition 5.1 (Product Category). For a category C, the product category C × C has:

• for all objects 𝑎, 𝑏 ∈ ob(C), object (𝑎, 𝑏) ∈ ob(C × C)

• for all morphisms 𝑓 , 𝑔 ∈ mor(C), morphism (𝑓 , 𝑔) ∈ mor(C × C)

where composition of morphisms is defined componentwise
a
.

a
This definition of product categories generalizes to a product of two categories, and is indeed a construction of

the product of two objects (categories) in Cat.

Now we suppose C has products. Then there is a product functor 𝑃 : C × C → C given by

𝑃 (𝐴, 𝐵) = 𝐴 × 𝐵 for objects (𝐴, 𝐵) and 𝑃 (𝑓 , 𝑔) = 𝑓 × 𝑔 for morphisms (𝑓 , 𝑔), and a swapped product

functor 𝑆 : C × C → C given by 𝑆 (𝐴, 𝐵) = 𝐵 ×𝐴 and 𝑆 (𝑓 , 𝑔) = 𝑔 × 𝑓 . We can now see that for every

morphism (𝑓 : 𝐴 → 𝐶,𝑔 : 𝐵 → 𝐷) in C × C the following diagram commutes in C:

𝑃 (𝐴, 𝐵) 𝑆 (𝐴, 𝐵)

𝑃 (𝐶, 𝐷) 𝑆 (𝐶, 𝐷)

swap𝐴,𝐵

𝑃 (𝑓 ,𝑔) 𝑆 (𝑓 ,𝑔)

swap𝐶,𝐷

This generalization of swap as a family of morphisms between the images of two functors that

preserve functoriality of 𝑃 and 𝑆 is precisely a natural transformation from 𝑃 to 𝑆 , which we shall

define as the following:

Definition 5.2 (Natural Transformation). Suppose we have categories C and D and a parallel

pair of functors 𝐹 : C → D and 𝐺 : C → D. A natural transformation 𝛼 : 𝐹 ⇒ 𝐺 is a family of

morphisms (forming the components of 𝛼) 𝛼𝐶 : 𝐹 (𝐶) → 𝐺 (𝐶) for all 𝐶 ∈ ob(C), such that for

all morphisms 𝑓 : 𝐴 → 𝐵 in C the following diagram commutes, or by saying that the family of

morphisms 𝛼𝐶 is natural in 𝐶:

𝐹 (𝐴) 𝐺 (𝐴)

𝐹 (𝐵) 𝐺 (𝐵)

𝛼𝐴

𝐹 (𝑓) 𝐺 (𝑓)

𝛼𝐵

Essentially, natural transformations are functoriality-preserving maps between parallel functors.

A natural transformation 𝛼 with components 𝛼𝑎 , 𝛼𝑏 and 𝛼𝑐 can be depicted with the following

diagram.

12

Foo Yong Qi

𝐴 𝐵

𝐶 𝐺 (𝐴) 𝐺 (𝐵)

𝐺 (𝐶)

𝐹 (𝐴) 𝐹 (𝐵)

𝐹 (𝐶)

𝑓

𝑔◦𝑓
𝑔

𝐺

𝐹
𝐺 (𝑓)

𝐺 (𝑔◦𝑓)
𝐺 (𝑔)

𝛼𝐴

𝐹 (𝑓)

𝐹 (𝑔◦𝑓)

𝛼𝑏

𝐹 (𝑔)

𝛼𝑐

5.1 Composition of Natural Transformations

Natural transformations can be composed in multiple ways, many of which are pertinent to our

discussion. The simplest among them, which is used to define the other forms of composition, is

known as vertical composition, which is composed componentwose.

Definition 5.3 (Vertical Composition). Suppose we have categories C and D and parallel

functors 𝐹,𝐺, 𝐻 : C → D with natural transformations 𝛼 : 𝐹 ⇒ 𝐺 and 𝛽 : 𝐺 ⇒ 𝐻 . Then the

vertical composition of 𝛼 and 𝛽 denoted 𝛽 ◦ 𝛼 : 𝐹 ⇒ 𝐻 is composition done component-wise: i.e.

(𝛽 ◦ 𝛼)𝑋 = 𝛽𝑋 ◦ 𝛼𝑋 :

𝐹 (𝑋) 𝐹 (𝑌)

𝑋 𝑌 𝐺 (𝑋) 𝐺 (𝑌)

𝐻 (𝑋) 𝐻 (𝑌)

𝐹 (𝑓)

𝛼𝑋

(𝛽◦𝛼)𝑋

𝛼𝑌

(𝛽◦𝛼)𝑌
𝑓

𝛽𝑋

𝐺 (𝑓)

𝛽𝑌

𝐻 (𝑓)

Or depicted as a globular diagram:

C D C D
𝛼

𝛽◦𝛼

𝐹

𝐻

𝐺

𝛽

𝐹

𝐻

Vertical composition is associative and unital; the identity natural transformation on a functor

𝐹 is given by (1𝐹)𝑋 = 1𝐹 (𝑋) and is natural in 𝑋 :

13

Functors and Monads—Connections between Programming and Category Theory

C D C D C D
1𝐹 𝛼

𝛼𝐹

𝐺

𝐹

𝛼

𝐹

𝐺

𝐺

1𝐺

𝐹

𝐺

To describe another way of composing natural transformations, we need to define a binary

operation between a functor and a natural transformation, known as whiskering.

Definition 5.4 (Whiskering). Suppose we have parallel functors 𝐹,𝐺 : C → D and a natural

transformation 𝛼 : 𝐹 ⇒ 𝐺 , and another functor 𝐻 : D → E. Then, whiskering 𝛼 with 𝐻 ,

denoted 𝐻𝛼 , is the resulting natural transformation 𝐻𝛼 : 𝐻 ◦ 𝐹 ⇒ 𝐻 ◦𝐺 and (𝐻𝛼)𝑋 = 𝐻 (𝛼𝑋)
where ◦ describes functor composition:

𝑋 𝑌

𝐹 (𝑋) 𝐹 (𝑌) 𝐻 (𝐹 (𝑋)) 𝐻 (𝐹 (𝑌))

𝐺 (𝑋) 𝐺 (𝑌) 𝐻 (𝐺 (𝑋)) 𝐻 (𝐺 (𝑌))

𝑓

𝐹 (𝑓)

𝛼𝑋 𝛼𝑌 (𝐻𝛼)𝑋

𝐻 (𝐹 (𝑓))

(𝐻𝛼)𝑌

𝐺 (𝑓) 𝐻 (𝐺 (𝑓))

Depicted as a globular diagram:

C D E C E𝛼 𝐻𝛼

𝐹

𝐺

𝐻

𝐻◦𝐹

𝐻◦𝐺

Alternatively if we have a functor 𝐹 : C → D and parallel functors 𝐺,𝐻 : D → E with natural

transformation 𝛼 : 𝐺 ⇒ 𝐻 then we get the natural transformation 𝛼𝐹 : (𝐺 ◦ 𝐹) ⇒ (𝐻 ◦ 𝐹)
where (𝛼𝐹)𝑋 = 𝛼𝐹 (𝑋) :

𝑋 𝑌

𝐹 (𝑋) 𝐹 (𝑌) 𝐺 (𝐹 (𝑋)) 𝐺 (𝐹 (𝑌))

𝐻 (𝐹 (𝑋)) 𝐻 (𝐹 (𝑌))

𝑓

𝐹 (𝑓)

(𝛼𝐹)𝑋

𝐺 (𝐹 (𝑓))

(𝛼𝐹)𝑌

𝐻 (𝐹 (𝑓))

And as a globular diagram:

14

Foo Yong Qi

C D E C E𝛼 𝛼𝐹
𝐹

𝐺

𝐻

𝐺◦𝐹

𝐻◦𝐹

Whiskering allows us to define horizontal composition succinctly.

Definition 5.5 (Horizontal Composition). Suppose we have parallel functors 𝐹,𝐺 : C → D
and 𝐻,𝐾 : D → E, and two natural transformations 𝛼 : 𝐹 ⇒ 𝐺 and 𝛽 : 𝐻 ⇒ 𝐾 . The horizontal
composition of 𝛼 and 𝛽 , denoted 𝛽 ∗ 𝛼 : 𝐻 ◦ 𝐹 ⇒ 𝐾 ◦𝐺 , is given by 𝛽 ∗ 𝛼 = 𝛽𝐺 ◦𝐻𝛼 = 𝐾𝛼 ◦ 𝛽𝐹 .
This is most easily shown with a globular diagram:

C D E C E𝛼 𝛽 𝛽∗𝛼

𝐹

𝐺

𝐻

𝐾

𝐻◦𝐹

𝐾◦𝐺

Alternatively, with the following commutative diagrams:

𝐾 (𝐹 (𝑋))

𝐻 (𝐹 (𝑋)) 𝐻 (𝐺 (𝑋)) 𝐾 (𝐺 (𝑋)) 𝐻 (𝐹 (𝑋)) 𝐾 (𝐺 (𝑋))

𝐻 (𝐹 (𝑌)) 𝐻 (𝐺 (𝑌)) 𝐾 (𝐺 (𝑌)) 𝐻 (𝐹 (𝑌)) 𝐾 (𝐺 (𝑌))

𝐾 (𝐹 (𝑌))

(𝐾𝛼)𝑋

𝐻 (𝐹 (𝑓))

(𝐻𝛼)𝑋

(𝛽𝐹)𝑋

𝐻 (𝐺 (𝑓))

(𝛽𝐺)𝑋

𝐾 (𝐺 (𝑓))

(𝛽∗𝛼)𝑋

𝐻 (𝐹 (𝑓)) 𝐾 (𝐺 (𝑓))

(𝐻𝛼)𝑌

(𝛽𝐹)𝑌

(𝛽𝐺)𝑌 (𝛽∗𝛼)𝑌

(𝐾𝛼)𝑌

The following globular diagrams help us understand the correspondence of horizontal composi-

tion with vertical composition and whiskering:

C E C E
𝐻𝛼 𝛽𝐹

𝐻◦𝐹

𝐻◦𝐺

𝐾◦𝐺

𝛽𝐺

𝐻◦𝐹

𝐾◦𝐺

𝐾◦𝐹

𝐾𝛼

Horizontal composition is also associative and unital. However, take note that the identity, unlike

with vertical composition, is in general, not the identity natural transformation on any functor 𝐹

i.e. 1𝐹 which contains the family of morphisms (1𝐹)𝑋 = 1𝐹 (𝑋) ; if we have 𝐹 : C → D (parallel to

itself) and its identity natural transformation 1𝐹 : 𝐹 ⇒ 𝐹 horizontally composed with a natural

15

Functors and Monads—Connections between Programming and Category Theory

transformation 𝛽 : 𝐺 ⇒ 𝐻 between two parallel functors𝐺,𝐻 : D → E, we get 𝛽𝐹 : 𝐺 ◦ 𝐹 ⇒ 𝐻 ◦ 𝐹 ,
which is simply whiskering:

C D E C E1𝐹 𝛽 𝛽𝐹

𝐹

𝐹

𝐺

𝐻

𝐺◦𝐹

𝐻◦𝐹

𝐻 (𝐹 (𝑋))

𝐺 (𝐹 (𝑋)) 𝐺 (𝐹 (𝑋)) 𝐻 (𝐹 (𝑋)) 𝐺 (𝐹 (𝑋)) 𝐻 (𝐹 (𝑋))

𝐺 (𝐹 (𝑌)) 𝐺 (𝐹 (𝑌)) 𝐻 (𝐹 (𝑌)) 𝐺 (𝐹 (𝑌)) 𝐻 (𝐹 (𝑌))

𝐻 (𝐹 (𝑌))

(𝐻1𝐹)𝑋

𝐺 (𝐹 (𝑓))

(𝐺1𝐹)𝑋

(𝛽𝐹)𝑋

𝐺 (𝐹 (𝑓))

(𝛽𝐹)𝑋

𝐻 (𝐹 (𝑓))

(𝛽∗1𝐹)𝑋

𝐺 (𝐹 (𝑓)) 𝐻 (𝐹 (𝑓))

(𝐺1𝐹)𝑌

(𝛽𝐹)𝑌

(𝛽𝐹)𝑌 (𝛽∗1𝐹)𝑌

(𝐻1𝐹)𝑌

Instead, the identity of horizontal composition is the identity natural transformation of the identity

functor of a category. Given category C, its identity functor 1C maps all objects and morphisms

to themselves, i.e. 1C (𝑋) = 𝑋 and 1C (𝑓) = 𝑓 for all objects 𝑋 and morphisms 𝑓 in C (this is the

identity morphism of an object C in the category of categories). The identity natural transformation

of 1C , i.e. 11C simply contains the identity morphisms in C, i.e. (11C)𝑋 = 11C (𝑋) = 1𝑋 for each

object 𝑋 in C. This is indeed the identity for horizontal composition. If we have 𝛽 : 𝐹 ⇒ 𝐺 where

𝐹,𝐺 : C → D, then 𝛽 ∗ 11C : 𝐹 ◦ 1C ⇒ 𝐺 ◦ 1C will be defined as 𝛽 ∗ 11C = 𝛽1C ◦ 𝐹11C . As per the
definition of whiskering, we have (𝛽1C)𝑋 = 𝛽1C (𝑋) = 𝛽𝑋 so 𝛽1C = 𝛽 , and (𝐹11C)𝑋 = 𝐹 ((11C)𝑋) =
𝐹 (11C (𝑋)) = 𝐹 (1𝑋) = 1𝐹 (𝑋) = (1𝐹)𝑋 so 𝐹11C is the identity natural transformation 1𝐹 , which we know

is an identity for vertical composition with 𝛽 , i.e. 𝛽 ∗ 11C = 𝛽 ◦ 1𝐹 = 𝛽 :

C C D C D11C 𝛽 𝛽∗11C

1C

1C

𝐹

𝐺

𝐹◦1C

𝐺◦1C

With similar arguments you can show that 11D ∗ 𝛽 = 𝛽 .

As stated earlier, the identity natural transformation on the identity functor on a category is

precisely the family of identity morphisms in a category. In our category of types T , (11T)𝐴 = 1𝐴,

which is the identity function id :: a -> a given by id x = x.

16

Foo Yong Qi

5.2 Correspondence with Polymorphic Functions

Example 5.1. Suppose we have two functorial type constructors: non-empty lists, and boxes.

-- NonEmpty List type
data NEL a = C a (NEL a) | L a
-- For printing NELs, not important
instance Show a => Show (NEL a) where

show ls = show $ toList ls where
toList (L a) = [a]
toList (C a t) = a : toList t

-- Box type
data Box a = Box a deriving Show
-- Functor instances
instance Functor NEL where

fmap f (L a) = L $ f a
fmap f (C a t) = C (f a) (fmap f t)

instance Functor Box where
fmap f (Box a) = Box $ f a

Letting 𝐹 : T → T be the NEL functor, and 𝐺 : T → T be the Box functor, we have the

following commutative diagrams describing the action of 𝐹 and 𝐺 in the category of types T :

𝐴 𝐹 (𝐴) 𝐺 (𝐴)

𝐵 𝐹 (𝐵) 𝐺 (𝐵)

𝑓 𝐹 (𝑓) 𝐺 (𝑓)

Now let us define a function toBox that receives a nonempty list of integers and puts its first

element in a box:

toBox :: NEL Int -> Box Int
toBox (L a) = Box a
toBox (C a t) = Box a

We can see that this function is a single morphism from NEL Int to Box Int. Clearly, this
definition should not be restricted to the Int type argument since the same definition applies to

all types a:

toBox :: NEL a -> Box a
toBox (L a) = Box a
toBox (C a t) = Box a

This allows toBox to be natural in all types a:

𝐴 𝐹 (𝐴) 𝐺 (𝐴)

𝐵 𝐹 (𝐵) 𝐺 (𝐵)

𝑓 𝐹 (𝑓)

toBox𝐴

𝐺 (𝑓)

toBox𝐵

17

Functors and Monads—Connections between Programming and Category Theory

main :: IO ()
main = do

let ls = C "abc" (C "de" (L "f"))
print $ fmap length ls -- [3,2,1]
print $ fmap length (toBox ls) -- Box 3
print $ toBox $ fmap length ls -- Box 3

Naturality of toBox should be easy to show, since its definition does not depend on what the

type a is.

5.3 Functor Categories

In fact, functors also assemble into categories. Such a category has functors as objects and natural

transformations between them as morphisms.

Definition 5.6 (Functor Category). Suppose we have categories C and D. The functor category
DC

has as objects, functors 𝐹 : C → D and as morphisms, natural transformations 𝛼 : 𝐹 ⇒ 𝐺 .

Composition of morphisms is defined as vertical composition of natural transformations, and

the identity morphism of any object 𝐹 : C → D is its identity natural transformation 1𝐹 .

To build some intuition for later sections, given category C we shall define the category of

endofunctors of C to be CC
, containing all endofunctors 𝐹 : C → C. Notice that the domain

and codomain of these functors are equal, so they can be composed with themselves, i.e. since

𝐹 ◦ 𝐹 : C → C is also an endofunctor of C, so 𝐹 ◦ 𝐹 is also an object in CC
. We also know that

functor composition is associative, i.e. ((𝐹 ◦ 𝐹) ◦ 𝐹) (𝑋) = (𝐹 ◦ (𝐹 ◦ 𝐹)) (𝑋) = 𝐹 (𝐹 (𝐹 (𝑋))) for all
objects (and morphisms) 𝑋 of C, so we shall denote 𝐹 ◦ 𝐹 and 𝐹 ◦ 𝐹 ◦ 𝐹 as 𝐹 2 and 𝐹 3 respectively (all

of these functors are objects in CC
).

A natural question might be to ask, what is a morphism from 𝐹 to 𝐹 2? For example, we know that

functor composition is unital with the identity functor on the (co)domain category, i.e. 1C◦𝐹 = 𝐹◦1C =

𝐹 , thus with a natural transformation 𝛼 : 1C ⇒ 𝐹 , we can construct two natural transformations

from 𝐹 to 𝐹 2, 𝐹𝛼 : 𝐹 ◦ 1C ⇒ 𝐹 2 and 𝛼𝐹 : 1C ◦ 𝐹 ⇒ 𝐹 2. Notice that 𝛼𝐹 ◦ 𝛼 = 𝐹𝛼 ◦ 𝛼 :4

𝐴 𝐹 (𝐴) 𝐴 𝐹 (𝐴) 1C 𝐹

𝐵 𝐹 (𝐵) 𝐹 (𝐴) 𝐹 (𝐹 (𝐴)) 𝐹 𝐹 2

𝛼𝐴

𝑓 𝐹 (𝑓)

𝛼𝐴

𝛼𝐴 𝐹 (𝛼𝐴)

𝛼

𝛼 𝛼𝐹

𝛼𝐵 𝛼𝐹 (𝐴)

𝐹𝛼

Example 5.2. Suppose we have, as a natural transformation in T , the polymorphic function

pairList which receives an object and puts two of them in a list:

pairList :: a -> [a]
pairList a = [a, a]

Letting 𝐿 be our list functor, we let 𝛼𝐿 be pairList itself (applied to objects of type [a]) and 𝐿𝛼
be fmap pairList. Then, we can see that 𝛼𝐿 ◦ 𝛼 = 𝐿𝛼 ◦ 𝛼 , i.e. fmap pairList . pairList
and pairList . pairList is the same polymorphic function:

print $ fmap pairList . pairList $ 2 -- [[2,2],[2,2]]
print $ pairList . pairList $ 2 -- [[2,2],[2,2]]

4
In general, we cannot claim that 𝛼𝐹 ◦ 𝛼 = 𝐹𝛼 ◦ 𝛼 implies 𝛼𝐹 = 𝐹𝛼 . This is only true when 𝛼 is epic (the categorical

notion of surjective).

18

Foo Yong Qi

Since we are in the category of (endo)functors, another question might be to ask, what is an

isomorphism of functors? By definition, this would be two natural transformations that when

composes, gives the identity functor. This is known as a natural isomorphism.

Definition 5.7. Supposewe have functors 𝐹,𝐺 : C → D. The natural transformation𝛼 : 𝐹 ⇒ 𝐺

is a natural isomorphism if the two conditions are met (the two conditions are equal):

• Each component 𝛼𝑋 : 𝐹 (𝑋) → 𝐺 (𝑋) in D is an isomorphism.

• There exists 𝛽 : 𝐺 ⇒ 𝐹 such that 𝛽 ◦ 𝛼 = 1𝐹 and 𝛼 ◦ 𝛽 = 1𝐺 .

If there exists a natural isomorphism between 𝐹 and𝐺 , they are said to be naturally isomorphic,

i.e. 𝐹 � 𝐺 .

Let us show that the two conditions are equal.

Lemma 5.1. Suppose we have parallel functors 𝐹,𝐺 : C → D and a natural transformation
𝛼 : 𝐹 ⇒ 𝐺 . If each component 𝛼𝑋 : 𝐹 (𝑋) → 𝐺 (𝑋) is an isomorphism, then there exists 𝛽 : 𝐺 ⇒ 𝐹

such that 𝛽 ◦ 𝛼 = 1𝐹 and 𝛼 ◦ 𝛽 = 1𝐺 .

Proof. Since each component 𝛼𝑋 : 𝐹 (𝑋) → 𝐺 (𝑋) is an isomorphism, each has an isomorphism

𝛽𝑋 : 𝐺 (𝑋) → 𝐹 (𝑋) such that 𝛼𝑋 ◦ 𝛽𝑋 = 1𝐺 (𝑋) and 𝛽𝑋 ◦ 𝛼𝑋 = 1𝐹 (𝑋) :

𝐹 (𝑋) 𝐺 (𝑋)

𝐹 (𝑌) 𝐺 (𝑌)

𝛼𝑋

𝐹 (𝑓) 𝐺 (𝑓)
𝛽𝑋

𝛼𝑌

𝛽𝑌

Clearly, these morphisms assemble into a natural transformation 𝛽 : 𝐺 ⇒ 𝐹 . Composition

of these natural transformations show (𝛼 ◦ 𝛽)𝑋 = 𝛼𝑋 ◦ 𝛽𝑋 = 1𝐺 (𝑋) = (1𝐺)𝑋 , and (𝛽 ◦ 𝛼)𝑋 =

𝛽𝑋 ◦ 𝛼𝑋 = 1𝐹 (𝑋) = (1𝐹)𝑋 .

□

Lemma 5.2. Suppose we have parallel functors 𝐹,𝐺 : C → D and a natural transformation
𝛼 : 𝐹 ⇒ 𝐺 . If there exists 𝛽 : 𝐺 ⇒ 𝐹 such that 𝛽 ◦ 𝛼 = 1𝐹 and 𝛼 ◦ 𝛽 = 1𝐺 , then each component
𝛼𝑋 : 𝐹 (𝑋) → 𝐺 (𝑋) is an isomorphism.

Proof. Clearly, we have, for each 𝑋 , (𝛽 ◦ 𝛼)𝑋 = (1𝐹)𝑋 so 𝛽𝑋 ◦ 𝛼𝑋 = 1𝐹 (𝑋) , and (𝛼 ◦ 𝛽)𝑋 = (1𝐺)𝑋
so 𝛼𝑋 ◦ 𝛽𝑋 = 1𝐺 (𝑋) , which shows that each component 𝛼𝑋 is an isomorphism.

□

Theorem 5.3. Suppose we have parallel functors 𝐹,𝐺 : C → D and a natural transformation
𝛼 : 𝐹 ⇒ 𝐺 . Each component 𝛼𝑋 : 𝐹 (𝑋) → 𝐺 (𝑋) is an isomorphism if and only if there exists
𝛽 : 𝐺 ⇒ 𝐹 such that 𝛽 ◦ 𝛼 = 1𝐹 and 𝛼 ◦ 𝛽 = 1𝐺 .

Proof. By Lemma 5.1 and Lemma 5.2.

□

19

Functors and Monads—Connections between Programming and Category Theory

Example 5.3. In the category of types T , ((A, B), C) is isomorphic to (A, (B, C)) for all

types A, B and C, given by the following functions:

-- isomorphism
tripleIso :: (a, (b, c)) -> ((a, b), c)
tripleIso (a, (b, c)) = ((a, b), c)

-- inverse of isomorphism
tripleIso' :: ((a, b), c) -> (a, (b, c))
tripleIso' ((a, b), c) = (a, (b, c))

This isomorphism is natural in A, B and C. This can be expressed as the natural isomorphism

tripleIso between two functors 𝐹 : T × T × T → T and 𝐺 : T × T × T → T given by

𝐹 (A, B, C) = (A, (B, C)) and 𝐺 (A, B, C) = ((A, B), C).

By this point, we should have built up enough intuition behind describing a natural family of

morphisms as a natural transformation between functors, and how they can be seen as morphisms

between functors. Correspondingly, a natural family of isomorphisms in a category is a natural

isomorphism, and they can likewise be seen as an isomorphism of functors. Natural isomorphisms

also help us to loosen our notion of ‘equivalence’ of categories. In the category of (small) categories,

we get an isomorphism of categories 𝐹 : C → D where there exists a functor 𝐺 : D → C such that

𝐹 ◦𝐺 = 1D and 𝐺 ◦ 𝐹 = 1C , in other words, C � D. However, such an isomorphism is too strict to

categorize an ‘equivalence’ of categories. Instead, we can define a natural equivalence that replaces
the equal sign earlier with natural isomorphisms, i.e. C and D are naturally equivalent if there exists
functors 𝐹 : C → D and𝐺 : D → C such that 𝐹 ◦𝐺 � 1D and𝐺 ◦ 𝐹 � 1C . The natural equivalence
of these categories is denoted C ≃ D.

6 MONOIDS

Monoids are also algebraic structures, which is usually defined as such
5
:

Definition 6.1 (Monoid (algebraic)). A monoid (𝑀, ·, 𝑒) is a set 𝑀 endowed with a binary

operator · : 𝑀 ×𝑀 → 𝑀 and an identity element 𝑒 ∈ 𝑀 subject to:

• Unity. 𝑒 · 𝑥 = 𝑥 · 𝑒 = 𝑥 for all 𝑥 ∈ 𝑀 .

• Associativity. (𝑥 · 𝑦) · 𝑧 = 𝑥 · (𝑦 · 𝑧) for all 𝑥,𝑦, 𝑧 ∈ 𝑀 .

Example 6.1. (N, +, 0) and (N,×, 1) are monoids.

We would, as always, like to generalize the notion of monoids to other categories. Let us attempt

to generalize the monoid (N, +, 0). We can see that a monoid has a set N, which is an object in Set.
We also have a binary operation ·, which we can model as a function on the cartesian product of N
with itself, to N, i.e. · : N × N→ N given by ·(𝑥,𝑦) = 𝑥 + 𝑦. The identity element can be seen as a

function 𝜖 : 𝐼 → N from any singleton set to N. For example, let the singleton be 𝐼 = {1}. Then we

can define 𝜖 : 𝐼 → N be given by 𝜖 (𝑥) = 0.

5Definition 6.1 should appear eerily similar to the definition of a category, shown in Definition 2.1. As such, we

can quite easily model this set-theoretic monoid as a category: A monoid is a category with one object. To understand

this characterization, allow𝑀 to be the only object in a categorical monoid C, and · be the composition of morphisms

and 1𝑀 be the identity. Then, we can see that this category fits the monoid axioms, i.e. 1𝑀 ◦ 𝑓 = 𝑓 ◦ 1𝑀 = 𝑓 for all

morphisms 𝑓 in C, and 𝑓 ◦ (𝑔 ◦ ℎ) = (𝑓 ◦ 𝑔) ◦ ℎ for all morphisms 𝑓 , 𝑔, ℎ in C.

20

Foo Yong Qi

Now, observe the following:

• For all sets 𝐴, 𝐵 and 𝐶 we can see that 𝐴 × (𝐵 ×𝐶) and (𝐴 × 𝐵) ×𝐶 is isomorphic, given by

𝑓 (𝑎, (𝑏, 𝑐)) = ((𝑎, 𝑏), 𝑐) and 𝑓 −1((𝑎, 𝑏), 𝑐) = (𝑎, (𝑏, 𝑐)). This gives us a natural isomorphism

𝛼𝐴,𝐵,𝐶 that associates the cartesian product of sets.

• For all sets 𝐴, we can see that 𝐼 ×𝐴 is isomorphic to 𝐴, given by 𝑓 (𝑖, 𝑎) = 𝑎 and 𝑓 −1(𝑎) = (1, 𝑎)
(recall that 1 is the only element in 𝐼). This gives us a natural isomorphism 𝜆𝐴 that shows an

isomorphism between 𝐴 and 𝐼 ×𝐴.

• Similarly, for all sets 𝐴, we can see that 𝐴 × 𝐼 is isomorphic to 𝐴, given by 𝑓 (𝑎, 𝑖) = 𝑎 and

𝑓 −1(𝑎) = (𝑎, 1). This gives us a natural isomorphism 𝜌𝐴 that shows an isomorphism between

𝐴 and 𝐴 × 𝐼 .

Based on these observations, the following diagrams commute. The first diagram shows that

for 𝑎, 𝑏, 𝑐 ∈ N, 𝑎 + 𝑏 ∈ N and 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 , while the second shows that 𝑎 + 0 = 0 + 𝑎 = 𝑎

where 0 ∈ N:

N × (N × N) (N × N) × N N × N

N × N N

𝐼 × N N × N N × 𝐼

N

𝛼N,N,N

1N×·

·×1N

·

·

𝜖×1N

𝜆N

·

1N×𝜖

𝜌N

Another question to ask is, in what categories do monoids arise? Let us observe that in Set,
together with the cartesian product × and a singleton set 𝐼 , the following diagrams commute:

𝐴 × (𝐵 × (𝐶 × 𝐷))) (𝐴 × 𝐵) × (𝐶 × 𝐷) ((𝐴 × 𝐵) ×𝐶) × 𝐷

𝐴 × ((𝐵 ×𝐶) × 𝐷) (𝐴 × (𝐵 ×𝐶)) × 𝐷

𝐴 × (𝐼 × 𝐵) (𝐴 × 𝐼) × 𝐵

𝐴 × 𝐵

𝛼𝐴,𝐵,𝐶×𝐷

1𝐴×𝛼𝐵,𝐶,𝐷

𝛼𝐴×𝐵,𝐶,𝐷

𝛼𝐴,𝐵×𝐶,𝐷

𝛼𝐴,𝐵,𝐶×1𝐷

𝛼𝐴,𝐼,𝐵

1𝐴×𝜆𝐵 𝜌𝐴×1𝐵

Let us finally generalize these observations to define monoids in a monoidal category. First, we
generalize the cartesian product × to amonoidal product ⊗ that associate up to natural isomorphisms

𝛼 , 𝜆 and 𝜌 . This gives the definition of a monoidal category:

Definition 6.2 (Monoidal Category). A monoidal category is a category C equipped with:

• A bifunctor ⊗ : C × C → C known as the monoidal product

21

Functors and Monads—Connections between Programming and Category Theory

• An object 𝐼 in C known as the monoidal unit

Such that the monoidal product is associative and unital up to natural isomorphism, via three

natural isomorphisms:

• The associator 𝛼𝐴,𝐵,𝐶 : 𝐴 ⊗ (𝐵 ⊗ 𝐶) � (𝐴 ⊗ 𝐵) ⊗ 𝐶 .

• The left identity on 𝐼 , 𝜆𝐴 : 𝐼 ⊗ 𝐴 � 𝐴.

• The right identity on 𝐼 , 𝜌𝐴 : 𝐴 ⊗ 𝐼 � 𝐴.

This data is subject to the condition that for all objects 𝐴, 𝐵,𝐶 and 𝐷 , the following diagrams

commute:

𝐴 ⊗ (𝐵 ⊗ (𝐶 ⊗ 𝐷))) (𝐴 ⊗ 𝐵) ⊗ (𝐶 ⊗ 𝐷) ((𝐴 ⊗ 𝐵) ⊗ 𝐶) ⊗ 𝐷

𝐴 ⊗ ((𝐵 ⊗ 𝐶) ⊗ 𝐷) (𝐴 ⊗ (𝐵 ⊗ 𝐶)) ⊗ 𝐷

𝐴 ⊗ (𝐼 ⊗ 𝐵) (𝐴 ⊗ 𝐼) ⊗ 𝐵

𝐴 ⊗ 𝐵

𝛼𝐴,𝐵,𝐶⊗𝐷

1𝐴⊗𝛼𝐵,𝐶,𝐷

𝛼𝐴⊗𝐵,𝐶,𝐷

𝛼𝐴,𝐵⊗𝐶,𝐷

𝛼𝐴,𝐵,𝐶⊗1𝐷

𝛼𝐴,𝐼,𝐵

1𝐴⊗𝜆𝐵 𝜌𝐴⊗1𝐵

This gives rise to the (most general) definition of a monoid in a monoidal category.

Definition 6.3. A monoid (𝑀, 𝜇, 𝜖) in a monoidal category (C, ⊗, 𝐼) consists of:

• An object𝑀 in C.

• A morphism for multiplication 𝜇 : 𝑀 ⊗ 𝑀 → 𝑀 .

• A unit morphism 𝜖 : 𝐼 → 𝑀

such that the following diagrams commute:

𝑀 ⊗ (𝑀 ⊗ 𝑀) (𝑀 ⊗ 𝑀) ⊗ 𝑀 𝑀 ⊗ 𝑀

𝑀 ⊗ 𝑀 𝑀

𝐼 ⊗ 𝑀 𝑀 ⊗ 𝑀 𝑀 ⊗ 𝐼

𝑀

𝛼𝑀,𝑀,𝑀

1𝑀⊗𝜇

𝜇⊗1𝑀

𝜇

𝜇

𝜖⊗1𝑀

𝜆𝑀

𝜇

1𝑀⊗𝜖

𝜌𝑀

The diagrams given in these two definitions are a generalization of the ones for the monoid

(N, +, 0) replacing N with𝑀 , × with ⊗, and · with 𝜇.

22

Foo Yong Qi

Example 6.2. (N, +, 𝑒) where +(𝑥,𝑦) = 𝑥 + 𝑦 and 𝑒 (𝑥) = 0 is a monoid in (Set,×, {1}).

Example 6.3. The unit type () has only one object () inhabiting it. Then, (T ,×, ()) is a
monoidal category. Recall the tripleIso natural isomorphism showing associativity, and the

prod' function that creates the product of two functions:

tripleIso :: (a, (b, c)) -> ((a, b), c)
tripleIso (a, (b, c)) = ((a, b), c)
prod' :: (a -> a') -> (b -> b') -> (a, b) -> (a', b')
prod' f g (x, y) = (f x, g y)

Let us now show an example of what follows from the commutativity of the pentagon diagram:

main :: IO ()
main = do

let x = (1, ("a", (2.0, 'b')))
print $ tripleIso $ tripleIso x -- (((1,"a"),2.0),'b')
print $ prod' tripleIso id $ tripleIso $ prod' id tripleIso $ x
-- (((1,"a"),2.0),'b')

Also, with the natural isomorphisms describing left and right identities:

leftId :: ((), a) -> a
leftId ((), a) = a
rightId :: (a, ()) -> a
rightId (a, ()) = a

The following follows from the commutativity of the triangle:

main :: IO ()
main = do

let x = (1, ((), "hello"))
print $ prod' id leftId $ x -- (1,"hello")
print $ prod' rightId id $ tripleIso x -- (1,"hello")

Then, (String, concat', emptyString) is a monoid in our monoidal category, where the

concat' function concatenates two strings, and the emptyString function produces the empty

string (list) from the unit object:

concat' :: (String, String) -> String
concat' (a, b) = a ++ b
emptyString :: () -> String
emptyString x = ""

An example of the result of commutativity of the monoid pentagon follows:

main :: IO ()
main = do

let x = ("a", ("b", "c"))
print $ concat' $ prod' concat' id $ tripleIso x -- "abc"
print $ concat' $ prod' id concat' $ x -- "abc"

An example of the result of the commutativity of the monoid triangle follows:

23

Functors and Monads—Connections between Programming and Category Theory

main :: IO ()
main = do

print $ concat' $ (prod' emptyString id) $ ((), "abc") -- "abc"
print $ leftId ((), "abc") -- "abc"
print $ concat' $ prod' id emptyString $ ("def", ()) -- "def"
print $ rightId ("def", ()) -- "def"

A consequence of (String, concat', emptyString) being a monoid is that folding left or right

on a list of strings using ++ and the empty string as the identity element gives the same result:

print $ foldl (++) "" ["a", "b", "c"] -- "abc"
print $ foldr (++) "" ["a", "b", "c"] -- "abc"

7 MONADS

Monads are incredibly important in functional programming; if you have come this far, this must

be the section you’ve been wanting to read. First, let us recall that, given category C, we can

obtain the category of endofunctors of C, denoted CC
. (CC, ◦, 1C) is a monoidal category (◦ here

represents functor composition). We know that functor composition is associative (i.e. (𝐹 ◦ (𝐺 ◦𝐻)) =
((𝐹 ◦𝐺) ◦𝐻)) and unital (i.e. 𝐹 ◦ 1C = 1C ◦ 𝐹 = 𝐹), and thus we have natural isomorphisms 𝛼𝐴,𝐵,𝐶, 𝜆𝐴
and 𝜌𝐴 that are equalities, i.e. 𝛼𝐴,𝐵,𝐶 : (𝐴◦ (𝐵 ◦𝐶)) = ((𝐴◦𝐵) ◦𝐶), 𝜆𝐴 : 1C ◦𝐴 = 𝐴 and 𝜌𝐴 : 𝐴◦1C = 𝐴

with components (𝛼𝐴,𝐵,𝐶)𝑋 = 1𝐴(𝐵(𝐶 (𝑋))), (𝜆𝐴)𝑋 = (𝜌𝐴)𝑋 = 1𝐴(𝑋) . Thus, the commutativity of the

pentagon and triangle diagrams for monoidal categories follows immediately:

𝐴 ◦ (𝐵 ◦ (𝐶 ◦ 𝐷))) (𝐴 ◦ 𝐵) ◦ (𝐶 ◦ 𝐷) ((𝐴 ◦ 𝐵) ◦𝐶) ◦ 𝐷

𝐴 ◦ ((𝐵 ◦𝐶) ◦ 𝐷) (𝐴 ◦ (𝐵 ◦𝐶)) ◦ 𝐷

𝐴 ◦ (1C ◦ 𝐵) (𝐴 ◦ 1C) ◦ 𝐵

𝐴 ◦ 𝐵

𝛼𝐴,𝐵,𝐶◦𝐷

1𝐴∗𝛼𝐵,𝐶,𝐷

𝛼𝐴◦𝐵,𝐶,𝐷

𝛼𝐴,𝐵◦𝐶,𝐷

𝛼𝐴,𝐵,𝐶∗1𝐷

𝛼𝐴,𝐼,𝐵

1𝐴∗𝜆𝐵 𝜌𝐴∗1𝐵

We make special note of the horizontal composition of natural transformations in the diagrams.

For the pentagon diagram, recall that 1𝐴 ∗𝛼𝐵,𝐶,𝐷 = 𝐴𝛼𝐵,𝐶,𝐷 . As such, the components (1𝐴 ∗𝛼𝐵,𝐶,𝐷)𝑋 =

(𝐴𝛼𝐵,𝐶,𝐷)𝑋 = 𝐴((𝛼𝐵,𝐶,𝐷)𝑋) = 𝐴(1𝐵(𝐶 (𝐷 (𝑋)))). By functoriality of 𝐴, 𝐴(1𝐵(𝐶 (𝐷 (𝑋)))) = 1𝐴(𝐵(𝐶 (𝐷 (𝑋)))) .
Similarly, since 𝛼𝐴,𝐵,𝐶 ∗ 1𝐷 = 𝛼𝐴,𝐵,𝐶𝐷 , (𝛼𝐴,𝐵,𝐶 ∗ 1𝐷)𝑋 = (𝛼𝐴,𝐵,𝐶𝐷)𝑋 = (𝛼𝐴,𝐵,𝐶)𝐷 (𝑋) = 1𝐴(𝐵(𝐶 (𝐷 (𝑋)))) .
For the triangle, (1𝐴 ∗ 𝜆𝐵)𝑋 = (𝐴𝜆𝐵)𝑋 = 𝐴((𝜆𝐵)𝑋) = 𝐴(1𝐵(𝑋)) = 1𝐴(𝐵(𝑋)) = (𝜌𝐴)𝐵(𝑋) = (𝜌𝐴𝐵)𝑋 =

(𝜌𝐴 ∗ 1𝐵)𝑋 .
When 𝛼 , 𝜆 and 𝜌 represent equalities, we have what is known as a strict monoidal category. Thus,

CC
is a strict monoidal category. As such, we shall do away with the symbol for functor composition

(like before) since any interpretation of 𝐴𝐵𝐶𝐷 for functors 𝐴, 𝐵,𝐶 and 𝐷 is the same functor.

Now let us determine what a monoid in CC
will look like. Such a monoid (𝑀, 𝜇, 𝜖) will have

natural transformations 𝜇 : 𝑀2 ⇒ 𝑀 and 𝜖 : 1C ⇒ 𝑀 where the following diagrams commute:

24

Foo Yong Qi

𝑀3 𝑀3 𝑀2

𝑀2 𝑀

1C𝑀 𝑀2 𝑀1C

𝑀

𝛼𝑀,𝑀,𝑀

1𝑀∗𝜇

𝜇∗1𝑀

𝜇

𝜇

𝜖∗1𝑀

𝜆𝑀

𝜇

1𝑀∗𝜖

𝜌𝑀

Observe:

• In the pentagon diagram, 𝛼 represents an equality, 𝜇 ∗ 1𝑀 = 𝜇𝑀 and 1𝑀 ∗ 𝜇 = 𝑀𝜇.

• In the triangle, 1C𝑀 = 𝑀1C = 𝑀 , 𝜖 ∗ 1𝑀 = 𝜖𝑀 , 1𝑀 ∗ 𝜖 = 𝑀𝜖 , and 𝜆𝑀 and 𝜌𝑀 represent

equalities.

As such, we can collapse each of the two diagrams into a square:

𝑀3 𝑀2 𝑀 𝑀2

𝑀2 𝑀 𝑀2 𝑀

𝜇𝑀

𝑀𝜇 𝜇

𝜖𝑀

𝑀𝜖 𝜇

𝜇 𝜇

You might be surprised to know that this is the definition of a monad on C. As such, a monad on C
is a monoid in the category of endofunctors of C.

Definition 7.1 (Monad). A monad (𝑀, 𝜇, 𝜖) on C is an endofunctor𝑀 : C → C equipped with

two natural transformations 𝜇 : 𝑀2 ⇒ 𝑀 and 𝜖 : 1C ⇒ 𝑀 such that the following diagrams

commute:

𝑀3 𝑀2 𝑀 𝑀2

𝑀2 𝑀 𝑀2 𝑀

𝜇𝑀

𝑀𝜇 𝜇

𝜖𝑀

𝑀𝜖 𝜇

𝜇 𝜇

Example 7.1. Recall our list functor 𝐿 that maps types to a list of that type, and lifts functions

on types to functions on lists of those types. 𝐿 is clearly an endofunctor of T , because the list

type(s) are also types. As such, let us define the natural transformation concatAll that takes a

list of list of types and concatenates its elements together:

concatAll :: [[a]] -> [a]
concatAll [] = []
concatAll (x : xs) = x ++ concatAll xs

Naturality of concatAll should be intuitive. Then, let us define the singleton function that

puts an object by itself in a list:

25

Functors and Monads—Connections between Programming and Category Theory

singleton :: a -> [a]
singleton a = [a]

Again, naturality of singleton should be intuitive. With these functions, (𝐿, concatAll,
singleton) is a monad. The consequence of this is that concatAll . concatAll and

concatAll . fmap concatAll are the same polymorphic function:

print $ concatAll . concatAll $ [["a", "b", "c"], ["d", "e"]] -- "abcde"
print $ concatAll . fmap concatAll $ [["a", "b", "c"], ["d", "e"]] -- "abcde"

Both concatAll . singleton and concatAll . fmap singleton are the identity function

on lists:

print $ concatAll . singleton $ "abcde" -- "abcde"
print $ concatAll . fmap singleton $ "abcde" -- "abcde"

7.1 Why Monads?

Monads give rise to a consequence that is incredibly powerful in programming. Recall from Defini-
tion 7.1 that (𝑀, 𝜇, 𝜖) is a monad if and only if for all 𝑋 , (M1) 𝜇𝑋 ◦ 𝜇𝑀 (𝑋) = 𝜇𝑋 ◦𝑀 (𝜇𝑋), and (M2)

𝜇𝑋 ◦ 𝜖𝑀 (𝑋) = 𝜇𝑋 ◦𝑀 (𝜖𝑋) = 1𝑀 (𝑋) . Further recall what it means for 𝜇 and 𝜖 to be natural, i.e. for all

objects 𝐴, 𝐵 and morphisms 𝑓 : 𝐴 → 𝐵, 𝜇𝐵 ◦𝑀 (𝑀 (𝑓)) = 𝑀 (𝑓) ◦ 𝜇𝐴 and𝑀 (𝑓) ◦ 𝜖𝐴 = 𝜖𝐵 ◦ 𝑓 .
Now, given monad (𝑀, 𝜇, 𝜖), and morphisms 𝑓 : 𝐴 → 𝑀 (𝐵) and 𝑔 : 𝐵 → 𝑀 (𝐶), let us define a

new binary operation ⊕ called Kleisli composition where 𝑔 ⊕ 𝑓 : 𝐴 → 𝑀 (𝐶), is given by
6

𝑔 ⊕ 𝑓 = 𝜇𝐶 ◦𝑀 (𝑔) ◦ 𝑓

Let us now show a correspondence between our earlier definition of monads and ⊕. First, an
incredibly elementary lemma:

Lemma 7.1. Suppose we have parallel morphisms 𝑔, ℎ : 𝐴 → 𝐵. 𝑔 = ℎ if and only if for all
morphisms 𝑓 : 𝑍 → 𝐴, 𝑔 ◦ 𝑓 = ℎ ◦ 𝑓 .

Proof. From left to right, if 𝑔 = ℎ then for all 𝑓 , 𝑔◦ 𝑓 = ℎ◦ 𝑓 . This is simple to show by subtituting

𝑔 with ℎ, giving us ℎ ◦ 𝑓 = ℎ ◦ 𝑓 . From right to left, since for all 𝑓 we have 𝑔 ◦ 𝑓 = ℎ ◦ 𝑓 , then
we have 𝑔 ◦ 1𝐵 = ℎ ◦ 1𝐵 . By the property of the identity morphism we get 𝑔 = ℎ.

□

Theorem 7.2. Fix category C. (𝑀, 𝜇, 𝜖) is a monad if and only if:

A1 For all 𝑓 : 𝐴 → 𝑀 (𝐵), 𝑔 : 𝐵 → 𝑀 (𝐶) and ℎ : 𝐶 → 𝑀 (𝐷), ⊕ is associative, i.e. (ℎ ⊕𝑔) ⊕ 𝑓 =

ℎ ⊕ (𝑔 ⊕ 𝑓).

A2 For all 𝑓 : 𝐴 → 𝑀 (𝐵): 𝜖 is unital, i.e. 𝑓 ⊕ 𝜖𝐴 = 𝜖𝑀 (𝐵) ⊕ 𝑓 = 𝑓 .

6
this is also composition in a Kleisli Category.

26

Foo Yong Qi

Proof. First we show that conditions A1 and M1 are equivalent.

(ℎ ⊕ 𝑔) ⊕ 𝑓 = ℎ ⊕ (𝑔 ⊕ 𝑓) (A1)

⇔ 𝜇𝐷 ◦𝑀 (ℎ ⊕ 𝑔) ◦ 𝑓 = 𝜇𝐷 ◦𝑀 (ℎ) ◦ (𝑔 ⊕ 𝑓) ⊲ expansion on ⊕
⇔ 𝜇𝑑 ◦𝑀 (𝜇𝐷 ◦𝑀 (ℎ) ◦ 𝑔) ◦ 𝑓 = 𝜇𝐷 ◦𝑀 (ℎ) ◦ 𝜇𝐶 ◦𝑀 (𝑔) ◦ 𝑓 ⊲ expansion on ⊕
⇔ 𝜇𝐷 ◦𝑀 (𝜇𝐷) ◦𝑀 (𝑀 (ℎ)) ◦𝑀 (𝑔) = 𝜇𝐷 ◦𝑀 (ℎ) ◦ 𝜇𝐶 ◦𝑀 (𝑔) ⊲ functoriality of𝑀

⇔ 𝜇𝐷 ◦𝑀 (𝜇𝐷) ◦𝑀 (𝑀 (ℎ)) = 𝜇𝐷 ◦ 𝜇𝑀 (𝐷) ◦𝑀 (𝑀 (ℎ)) ⊲ naturality of 𝜇

⇔ 𝜇𝐷 ◦𝑀 (𝜇𝐷) = 𝜇𝐷 ◦ 𝜇𝑀 (𝐷) (M1)

Now, let us show that conditions A2 and M2 are equivalent.

𝑓 ⊕ 𝜖𝐴 = 𝜖𝑀 (𝐵) ⊕ 𝑓 = 𝑓 (A2)

⇔ 𝑓 ⊕ 𝜖𝐴 = 𝜖𝑀 (𝐵) ⊕ 𝑓 = 1𝑀 (𝐵) ◦ 𝑓 ⊲ identity morphism

⇔ 𝜇𝐵 ◦𝑀 (𝑓) ◦ 𝜖𝐴 = 𝜇𝐵 ◦𝑀 (𝜖𝐵) ◦ 𝑓 = 1𝑀 (𝐵) ◦ 𝑓 ⊲ expansion on ⊕
⇔ 𝜇𝐵 ◦ 𝜖𝑀 (𝐵) ◦ 𝑓 = 𝜇𝐵 ◦𝑀 (𝜖𝐵) ◦ 𝑓 = 1𝑀 (𝐵) ◦ 𝑓 ⊲ naturality of 𝜖

⇔ 𝜇𝐵 ◦ 𝜖𝑀 (𝐵) = 𝜇𝐵 ◦𝑀 (𝜖𝐵) = 1𝑀 (𝐵) (M2)

□
Let us call morphisms 𝑓 : 𝐴 → 𝑀 (𝐵) as monadic morphisms. Theorem 7.2 shows us that a

monad allows us to compose monadic morphisms via Kleisli composition associatively and unitally,

and conversely, any definition of natural transformations 𝜇 and 𝜖 together with functor𝑀 that gives

associativity and unity of Kleisli composition of monadic morphisms is a monad. This is precisely

the motivation behind the Monad typeclass in Haskell.

Let us attempt to define our own monad typeclass in Haskell, where return' is 𝜖 and join' is 𝜇:

1 class Functor m => Monad' m where
2 return' :: a -> m a
3 join' :: m (m a) -> m a

Then, let us define Kleisli composition for all monads in Haskell:

1 (<=<) :: Monad' m => (b -> m c) -> (a -> m b) -> a -> m c
2 g <=< f = join' . fmap g . f

As an example, let us create the list monad (where return' is the same as singleton and join' is

the same as from Example 7.1), and two list-producing functions

1 -- List monad
2 instance Monad' [] where
3 return' a = [a]
4 join' [] = []
5 join' (x : xs) = x ++ join' xs
6 -- List-producing functions
7 f :: String -> [Int]
8 f x = [length x * 2]
9 g :: Num a => a -> [a]
10 g x = [x + 1, x + 2, x + 3]
11

12 main :: IO ()
13 main = do
14 print $ g <=< f $ "abc" -- [7,8,9]

27

Functors and Monads—Connections between Programming and Category Theory

7.2 Connections to Monads in Programming

However, in programming, our example earlier may be somewhat awkward. Let us look at another

example. In many other languages, the Option type constructor represents an optional value, i.e.

Option a is either Some a or it is nothing, i.e. None. Clearly, this Option type is also a functor. Let

us also make Option a monad, so that we can compose functions that return optional values:

1 -- The Option monad
2 data Option a = Some a | None deriving Show
3

4 instance Functor Option where
5 fmap f (Some x) = Some $ f x
6 fmap f None = None
7

8 instance Monad' Option where
9 return' a = Some a
10 join' None = None
11 join' (Some (Some a)) = Some a
12 join' (Some None) = None
13

14 -- A divide function that does not divide by 0
15 divideBy :: Int -> Int -> Option Int
16 divideBy a b = case a of
17 0 -> None
18 x -> Some $ b `div` x
19

20 main :: IO ()
21 main = do
22 print $ divideBy 3 <=< divideBy 4 $ 24 -- Some 2
23 print $ divideBy 3 <=< divideBy 0 $ 24 -- None
24 print $ divideBy 0 <=< divideBy 4 $ 24 -- None

What we would really like to have is a way to express sequential Kleisli composition, i.e. instead of

h <=< g <=< f $ x, we could write something like f x >>=>> g >>=>> h which means ‘first do

f x, then monadically apply g to it, finally monadically apply h to that result’. It is relatively simple

to define >>=>>:

1 (>>=>>) :: Monad' m => m a -> (a -> m b) -> m b
2 x >>=>> f = join' . fmap f $ x

We can see from this definition that g <=< f is \x -> f x >>=>> g. This rather miniscule addition

makes it syntactically convenient to compose monadic results via Kleisli composition:

1 f = divideBy 2
2 g = divideBy 3
3 h = divideBy 4
4 z = divideBy 0
5 main :: IO ()
6 main = do
7 print $ f 48 >>=>> g >>=>> h -- Some 2
8 print $ f 48 >>=>> z >>=>> h -- None
9 print $ f 48 >>=>> g >>=>> z -- None
10 print $ z 48 >>=>> g >>=>> h -- None

28

Foo Yong Qi

In fact, if we provide a definition of >>=>> for each monad, they do not need to also define join'
since we can define join' based on >>=>> for any monad:

join' :: Monad' m => m (m a) -> m a
join' x = x >>=>> id

What we have done was the re-construct the Monad typeclass and Maybe and [] monads in Haskell.

1 -- Monad typeclass (built-in in Haskell)
2 class Functor m => Monad m where
3 return :: a -> m a
4 (>>=) :: m a -> (a -> m b) -> m b -- >>=>>
5

6 -- List monad (built-in in Haskell)
7 instance Monad [] where
8 return a = [a]
9 [] >>= f = []
10 (x : xs) >>= f = f x ++ (xs >>= f)
11

12 -- Maybe (Option) monad (built-in in Haskell)
13 data Maybe a = Just a -- Some a
14 | Nothing -- None
15 instance Monad Maybe where
16 return a = Just a
17 Nothing >>= f = Nothing
18 Some x >>= f = f x
19

20 -- join function for all monads
21 join :: Monad m => m (m a) -> m a
22 join x = x >>= id
23

24 -- kleisli composition
25 (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
26 g <=< f = join . fmap g . f
27

28 -- A divide function that does not divide by 0
29 divideBy :: Int -> Int -> Maybe Int
30 divideBy a b = case a of
31 0 -> Nothing
32 x -> Just $ b `div` x
33

34 f = divideBy 2
35 g = divideBy 3
36 h = divideBy 4
37 z = divideBy 0
38 main :: IO ()
39 main = do
40 print $ f 48 >>= g >>= h -- Just 2
41 print $ f 48 >>= z >>= h -- Nothing
42 print $ f 48 >>= g >>= z -- Nothing
43 print $ z 48 >>= g >>= h -- Nothing

29

Functors and Monads—Connections between Programming and Category Theory

Finally, a natural question to ask would be, how do we know that our list and maybe monads are

actually monads? As per Theorem 7.2, we can show that these are monads by showing associativity

and unity of Kleisli composition. However, other programming texts usually give a different set of

laws expressed in terms of >>=. These laws are typically written as the monad laws for all x:

H1. return x >>= f ==== f x

H2. f x >>= return ==== f x

H3. f x >>= (\y -> (g y >>= h)) ==== (f x >>= g) >>= h

We shall show this to be equivalent to conditions A1 and A2 (and by extension, M1 and M2)

shown in Theorem 7.2.

Corollary 7.3. An endofunctor (along with natural transformations 𝜖 and 𝜇 defined in the obvious
way) has associative and unital Kleisli composition if and only if it satisfies the monad laws.

Proof. Let us first show that condition A1 in Theorem 7.2 is met if and only if H3 is met:

(h <=< g) <=< f ==== h <=< (g <=< f)
<=> ((h <=< g) <=< f) x ==== (h <=< (g <=< f)) x
<=> f x >>= (h <=< g) ==== (g <=< f) x >>= h
<=> f x >>= (\y -> g y >>= h) ==== (f x >>= g) >>= h

Finally we show that condition A2 in Theorem 7.2 is met if and only both H1 and H2 are met.

(f <=< return) ==== (return <=< f) ==== f
<=> (f <=< return) x ==== (return <=< f) x ==== f x
<=> return x >>= f ==== f x >>= return ==== f x

□

8 CONCLUSION

We have shown, through immense suffering, that we can construct a category of types T with

morphisms and functions between these types. From this, we have also shown.

1. a functor (in the programming sense) is precisely an endofunctor on T ;

2. product and function types (in the programming sense) are precisely product and exponential

objects in T ;

3. a polymorphic function (in the programming sense) is precisely a natural transformation

between two parallel endofunctors on T ;

4. a monoid (in the programming sense) is precisely a monoid in the monoidal category T
induced by the cartesian product and the unit type;

5. a monad (in the programming sense) is precisely a monad on T , which is a monoid in the

category of endofunctors of T , which we know is a strict monoidal category, induced by

functor composition and the identity functor;

6. if in defining a monad (in the programming sense) we satisfy the three monad laws (in the

programming sense), what we have is actually a monad on T ;

Your reward for finishing this document? Bragging rights.

30

Foo Yong Qi

A UNIVERSAL PROPERTIES, FORMALLY

Definition A.1 (Universal Morphism). Let 𝐹 : C → D be a functor between categories C and

D. Let 𝐴 and𝑈 be objects of C, and 𝑋 be an object of D.

Then, a universal morphism from 𝐹 to 𝑋 is a unique pair (𝑈 ,𝑢 : 𝐹 (𝑈) → 𝑋) that satisfies the
following universal property:

For any morphism 𝑓 : 𝐹 (𝐴) → 𝑋 in D, there exists a unique morphism ℎ : 𝐴 → 𝑈 in C such

that the following diagram commutes:

𝑋 𝐹 (𝑈) 𝑈

𝐹 (𝐴) 𝐴

𝑢

𝑓
𝐹 (ℎ) ℎ

We shall now re-define our characterization of the categorical product in Definition 4.1 as a

universal property.

Definition A.2 (Product). Let the functor 𝐹 : C → C × C be a functor from the category C to

its product category (defined in Definition 5.1), given as 𝐹 (𝑋) = (𝑋,𝑋) on all objects 𝑋 and

𝐹 (𝑓 : 𝐴 → 𝐵) = (𝑓 , 𝑓) on all morphisms 𝑓 . Then, (𝐴 × 𝐵, (𝜋1, 𝜋2) : 𝐹 (𝐴 × 𝐵) → (𝐴, 𝐵)) is a
universal morphism from 𝐹 to (𝐴, 𝐵) which characterizes the product𝐴×𝐵. This means that for

all objects 𝑋 in C and morphisms 𝑓 ′ : 𝐹 (𝑋) → (𝐴, 𝐵) in C × C, there exists a unique morphism

𝑝 : 𝑋 → 𝐴 × 𝐵 which makes the following diagram commute:

(𝐴, 𝐵) 𝐹 (𝐴 × 𝐵) 𝐴 × 𝐵

𝐹 (𝑋) 𝑋

(𝜋1,𝜋2)

𝑓 ′
𝐹 (𝑝) 𝑝

Replacing 𝐹 (𝑥) with (𝑥, 𝑥) everywhere and the morphism 𝑓 ′ : 𝐹 (𝑋) → (𝐴, 𝐵) with a pair of

morphisms (𝑓 : 𝑋 → 𝐴,𝑔 : 𝑋 → 𝐵) in the commutative diagram above gives us the following

commutative diagram:

(𝐴, 𝐵) (𝐴 × 𝐵,𝐴 × 𝐵) 𝐴 × 𝐵

(𝑋,𝑋) 𝑋

(𝜋1,𝜋2)

(𝑓 ,𝑔)
(𝑝,𝑝) 𝑝

Destructuring the pairs in the triangle on the left we recover the commutative diagram in C
given in Definition 4.1.

Now we can also re-define our characterization of the exponential object in Definition 4.4 as a

universal property.

Definition A.3 (Exponential Object). Suppose we have a category C with objects 𝐵 and 𝐶 , and

the category contains all binary products with 𝐵, i.e. for all objects𝐴 in C then𝐴×𝐵 is also in C.

31

Functors and Monads—Connections between Programming and Category Theory

We define the functor 𝐹 : C → C given by 𝐹 (𝐴) = 𝐴×𝐵 for all objects𝐴 in C and 𝐹 (𝑓) = 𝑓 × 1𝐵

for all morphisms 𝑓 in C. Then, (𝐶𝐵, 𝜖 : 𝐶𝐵 × 𝐵 → 𝐶) is a universal morphism from 𝐹 to 𝐶

which characterizes the exponential object𝐶𝐵 . This means that for all morphisms 𝑓 : 𝐹 (𝐴) → 𝐶

in C, there exists a unique morphism 𝜆𝑓 : 𝐴 → 𝐶𝐵 such that the following diagram commutes:

𝐶 𝐹 (𝐶𝐵) 𝐶𝐵

𝐹 (𝐴) 𝐴

𝜖

𝑓
𝐹 (𝜆𝑓) 𝜆𝑓

Replacing 𝐹 (𝐴) with 𝐴 × 𝐵 for all objects 𝐴 and 𝐹 (𝑓) with 𝑓 × 1𝐵 for all morphisms 𝑓 allows us

to recover the original commutative diagram shown in Definition 4.4:

𝐶 𝐶𝐵 × 𝐵 𝐶𝐵

𝐴 × 𝐵 𝐴

𝜖

𝑓
𝜆𝑓 ×1𝐵 𝜆𝑓

32

	Motivation
	Categories
	Functors
	Universal Properties
	Natural Transformations
	Composition of Natural Transformations
	Correspondence with Polymorphic Functions
	Functor Categories

	Monoids
	Monads
	Why Monads?
	Connections to Monads in Programming

	Conclusion
	Universal Properties, Formally

